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Problem 25 Generalized Harmonic Oscillator 10 Punkte
Consider the equation of motion (EOM)

S̈(t) + νṠ(t) + Ω2S(t) +

∫ t

0

dτM(t− τ)Ṡ(τ) = 0

together with the initial conditions S(0) = S > 0 and Ṡ(0) = 0 and ν,Ω > 0. Moreover M(t) is
assumed to be an equilibrium correlation function.

a) Perform a Laplace-Transformation of the EOM and solve it for Ŝ(z).
Note: Remember the convention from the lecture: Ŝ(z) = i

∫∞
0
dteiztS(t).

b) Derive a short-time expansion for S(t) up to and including terms of O(t4). Calculate the high-
frequency expansion of Ŝ(z) up to and including terms of O(z−5). Compare the two expansions.

Problem 26 Model of a Rubber Band, Part II 10 Punkte
In problem 3 we introduced a simple model for a rubber band. Here we will extend the analysis of this
model

a) Calculate the necessary (entropic) force f = −T ∂S
∂L

to keep the chain at a prescribed length
L. Determine the force-extension relation L(f, T ). What are the conditions for Hooke’s law to
apply?

b) Let us introduce an external field that biases the chain in one direction: Assume every segment
pointing to the left costs an energy ε > 0. Determine the entropy per segement S/N as a function
of the specific energy E/(Nε).

c) Calculate and plot the temperature of the rubber band as a function of ε. Discuss the different
regimes.

Problem 27 The Virial Series 10 Punkte
Writing the equation of state

p

kBT
= n+B2n

2 +B3n
3 + . . .

as a Taylor series in the density n = N/V is called a Virial Expansion and the expectation is that the
higher order terms can be neglected at low densities.



a) Calculate the chemical potential µ(N, V, T ) of an ideal gas and show that µ = µ(n, T ). Show
that the fugacity z := eβµ vanishes as n→ 0.

b) Using the canonical partition function Z(N) ≡ Z(T, V,N) we introduce the grand canonical
partition function

Z =
∞∑
N=0

Z(N)zN .

Using the grand canonical partition function, expand the density n(z) = a1z + a2z
2 +O(z3) to

second order in the fugacity z. Invert n(z) to obtain z(n) to second order in the density n and use
the grand canonical potential G = kBT lnZ to show that the second virial coefficient

B2 =
V

2

(
1− 2Z(2)

Z2(1)

)
can be written in terms of the one- and two-particle canonical partition functions.
Hint: Remember G = PV .

c) Consider a system of particles with a spherically symmetric interaction potential U(r) and
compute Z(1), Z(2) to show that

B2 = −2π

∫ ∞
0

drr2
(
e−βU(r) − 1

)


