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Considering a granular fluid of inelastic smooth hard spheres, we discuss the conditions delineating the
rheological regimes comprising Newtonian, Bagnoldian, shear thinning, and shear thickening behavior.
Developing a kinetic theory, valid at finite shear rates and densities around the glass transition density, we
predict the viscosity and Bagnold coefficient at practically relevant values of the control parameters. The
determination of full flow curves relating the shear stress σ to the shear rate _γ and predictions of the yield
stress complete our discussion of granular rheology derived from first principles.
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Predicting and understanding granular flow is desirable
for safety and efficiency. Many geophysical flows from
avalanches to landslides involve macroscopic particles and
potentially threaten lives all around the planet [1,2]. A large
fraction of the raw materials handled in industry comes in
granular form [3]. With the advent of 3D printing tech-
nologies, this fraction will further increase [4,5]. Hence,
efficient handling of granular flows promises considerable
advantages like energy savings [6]. The crucial property of
granular particles—namely that they are of macroscopic
size—makes a theoretical description challenging [7–9].
First, dissipative collisions break time-reversal symmetry
and place granular flows firmly in the realm of far-from-
equilibrium physics [10,11]. Second, the macroscopic mass
of an individual granular particle makes its thermal exci-
tations negligible [7] and necessitates a driving force that is
continuously acting on the granular assembly to keep it
flowing [12–14].
At small volume fractions φ ≪ 1 and infinitesimal shear

rates _γ → 0 standard procedures starting from the
Boltzmann or Enskog equation predict a Newtonian rheol-
ogy for (smooth) granular particles. Various approximate
expressions exist for the viscosity as a function of inelas-
ticity (often quantified by a coefficient of restitution ε)
and volume fraction [15–20]. However, most natural and
industrial granular flows occur at considerable volume
fractions all the way up to close packing densities.

Relevant shear rates _γ are also often substantial compared
to microscopic timescales.
Experimental as well as numerical studies have found a

wealth of phenomena at finite densities and shear rates
[21–26]. One of the earliest results of granular physics by
Bagnold [21]—now commonly referred to as Bagnold
scaling—is the observation that granular fluids do not
follow a Newtonian rheology, but that the shear stress
shows a quadratic dependence on the shear rate, σ ¼ B_γ2,
instead. Phenomenologically, Bagnold scaling is a mani-
festation of shear thickening as the shear rate dependent
viscosity ηð_γÞ≡ σ=_γ ∼ _γ increases with shear rate.
Theoretical predictions of the corresponding Bagnold
coefficient B are rare [15,27,28] and for low density or
low shear rate only. Later studies also show the opposite
behavior, i.e., shear thinning, in granular fluids. Taken
together, these observations imply that the Newtonian
rheology is valid only in a limited part of the parameter
space and capturing the full rheology in a single theoretical
framework remains a challenge.
In this Letter we will show that, indeed, granular flows

display all three regimes: Newtonian, shear thinning, and
shear thickening [Fig. 1(a)]. We will derive the conditions
to observe any of these behaviors. Based on this classi-
fication, we then calculate the relevant material properties,
namely the Newtonian viscosity η, the Bagnold coefficient
B, and, more generally, flow curves, i.e., σð_γÞ, or, equiv-
alently, ηð_γÞ.
Formally, the stationary shear stress σ at a constant finite

shear rate can be expressed via a generalized Green-Kubo
relation,

σ ¼ _γ

VT

Z ∞

0

dthσxyjσxyðtÞiref ; ð1Þ
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as the time integral over the shear stress autocorrelation
whose evolution depends on the flow [29]. Here σxy is the
Kirkwood shear stress defined in terms of the particle
positions and momenta [30]; V is the volume and T the
temperature of a reference state. The average h·iref is
performed with respect to the unsheared reference system.
Although the relation was originally derived for a reference
system in thermal equilibrium [29], it ultimately relates
stationary states including out-of-equilibrium reference
systems [31]. Our choice allows us to specify the perturbing
stress in Eq. (1) microscopically. The autocorrelation
function can be controlled by identifying a dominant decay
channel. For thermal colloidal suspensions the slow struc-
tural relaxations close to the glass transition provides such a
clearly defined, slow decay [32]. Approximating the stress
autocorrelation function in Eq. (1) in terms of the density
correlator ΦqðtÞ lies at the heart of the integration through
transients (ITT) formalism [29,33],

σ ≃ _γ
X
q

Z ∞

0

dtVqqð−tÞΦ2
qð−tÞðtÞ: ð2Þ

Here qð−tÞ≡ ð1þ ktÞ · q denotes the advected wave
vector and the velocity gradient tensor kαβ ≔ _γδαyδβx
prescribes simple shear [Fig. 1(b)]. Note that the advected
wave vector’s dependence on _γ effects a nonlinear stress-
shear rate relation in Eq. (2). The coupling constant Vqqð−tÞ
can be calculated explicitly [see Refs. [31,33] and Eq. (4)
below]. The ITT framework has led to a wealth of
qualitative and quantitative predictions regarding the rheol-
ogy of thermalized colloidal suspensions [34–37].
Power balance.—The temperature T of an overdamped

colloidal suspension is assumed to be controlled by a heat
bath. In particular, one assumes that the work performed on
the suspension by the shear force does not increase the
temperature but that instead the temperature can be chosen
freely. Formulating ITT for underdamped, Newtonian
dynamics, a thermostat has to be included explicitly with
the final results depending on the precise choice of artificial
thermostat [38,39]. In granular flows the balance between
shear heating and dissipation occurs naturally and actually
controls the qualitative behavior of the granular fluid. The
system we have in mind in the following is a sheared
fluidized bed [40]. To be specific, let us consider a fluid
composed of monodisperse smooth hard spheres of diam-
eter d, and mass m ¼ 1, with a coefficient of normal
restitution ε. We assume that, initially, the fluid is prepared
at a given density n, or packing fraction φ ¼ πnd3=6, and a
random fluidization force is applied throughout the system
with a characteristic power per particle PD to mimic
fluidization [41,42]. Then the initial granular temperature
T0 results from the power balance PD ¼ ΓωcðT0ÞT0 where
Γ ≔ ð1 − ε2Þ=3. The collision frequency, ωcðφ; TÞ ∝
φχðφÞ ffiffiffiffi

T
p

, increases with density and temperature and
χðφÞ denotes the pair correlation function at contact [20].
Once shear is applied with a prescribed shear rate _γ,

shear heating has to be included in the power balance of the
steady state,

σ _γ þ nPD ¼ nΓωcðTÞT; ð3Þ

resulting in a higher temperature T > T0 (Protocol H in
Ref. [31]). This clearly defines two regimes: a fluidization
dominated regime, where σ _γ ≪ nPD, and a shear domi-
nated regime, where σ _γ ≫ nPD including purely shear
driven systems (PD ≡ 0). Choosing the particle diameter,
d, as our length scale, and the inverse collision frequency in
the stationary state, ω−1

c ðTÞ, as our timescale, the packing

x

y
z

(a)

(b) (c)

FIG. 1. (a) Theoretical dynamic state diagram of a granular
fluid with coefficient of restitution ε ¼ 0.5 depending on
packing fraction φ (φ̂ ≔ φþ 5.5%) and shear rate _γ. Rheo-
logical behavior (R) color coded as indicated. Critical Péclet
numbers Pe� (dashed) where shear heating becomes important
and Peα (dash-dotted), where _γ matches the intrinsic relaxation
rate, τ−1α . (b) Schematic of the shear geometry with the shear
profile overlayed (red). (c) Maximal Péclet number, Pe∞
(orange dashed, left axis), and Bagnold coefficient, B (blue
solid, right axis), as a function of the volume fraction φ
comparing Bagnold’s measurements [21] (symbols) and the
kinetic theory presented here (lines).

TABLE I. Definition of the critical Péclet numbers delineating
the rheological regimes as functions of packing fraction φ and
coefficient of restitution ε. See text for details.

Peαðφ; ϵÞ ¼ ðωcταÞ−1
Pe�ðφ; ϵÞ ¼ ffiffiffi

2
p

ΓðεÞ=2σ̂ðPe�;φ; εÞ
Pe∞ðφ; ϵÞ ¼ ΓðεÞ=σ̂ðPe∞;φ; εÞ
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fraction, the coefficient of restitution, and the Péclet
number, Pe ¼ _γ=ωcðTÞ, alone determine the system’s state.
The temperature only controls the overall timescale.
The shear stress scales as σ ¼ nTσ̂ with a dimensionless
function σ̂ ¼ σ̂ðPe;φ; ϵÞ because nT provides the only
scale for an energy density. The crossover between the
regimes is expected where σ _γ ∼ nPD. This implicitly
determines a critical Péclet number Pe�ðφ; εÞ (cf. Table I).
In the fluidization dominated regime, the temperature

remains independent of the shear rate such that we can
linearize σ̂ ∼ _γ to find Newtonian behavior. In the shear
dominated regime the power balance reads nTσ̂ _γ ¼ nTΓωc
[43]; i.e., the collision frequency is proportional to the
shear rate and the corresponding Péclet number, Pe ¼
Pe∞ðφ; εÞ > 0 (cf. Table I), is independent of the shear rate.
From _γ ∝ ωc ∝

ffiffiffiffi
T

p
we obtain T ∝ _γ2 and, with that,

σ ∝ T ∝ _γ2: Bagnold rheology is observed in the shear
dominated regime where the shear rate is the only timescale
and the Péclet number, Pe∞, is fixed by the packing fraction
and the coefficient of restitution. Upon increasing the
shear rate _γ towards the Bagnold regime, the temperature
TðPeÞ=T0 ¼ ð1 − Pe=Pe∞Þ−2=3 diverges. This implies that
Pe∞ is the maximal Péclet number, which cannot be
exceeded in a granular fluid.
Glassy dynamics and yield stress.—Granular fluids have

been found to undergo a glass transition [14] at a critical
packing fraction φcðεÞ, which increases with increasing
dissipation [44]. Upon approaching the (granular) glass
transition, φ↗φc, the characteristic correlation time for
density fluctuations, τα, diverges. For _γ ≪ τ−1α the rheology
is Newtonian, as the granular fluid can respond immedi-
ately to the slow shear deformations. However, the viscos-
ity diverges as φ↗φc. For higher prescribed shear rates,
_γ ≳ τ−1α [i.e., Pe≳ Peαðφ; εÞ, cf. Table I], the glass is
forcibly molten.
At the lowest order it can be assumed that Φqðt → ∞Þ ∝

e−_γt for Pe > Peα. Consequently the Green-Kubo-Integral,
Eq. (2), becomes independent of the shear rate, i.e.,
σð_γÞ ≈ const. In terms of the viscosity ηð_γÞ ∼ 1=_γ we expect
to observe shear thinning. For even higher shear rates,
Pe > Pe�, shear heating will dominate and eventually bend
the flow curve to the shear thickening Bagnold regime.

For densities above the glass transition, φ > φc, Peα → 0
and the Newtonian regime vanishes altogether. Instead, a
finite (dynamical) yield stress σy ≔ σð_γ → 0Þ > 0 emerges,
which has to be overcome to melt the amorphous granu-
lar glass.
Granular integration through transients.—Recently

[31,45], we derived a non-equilibrium ITT formalism for
granular fluids (GITT) employing granular mode-coupling
theory (MCT) [44,46]. As a central result, we obtain an
expression for the generalized Green-Kubo relation in
isotropic approximation,

σ

nT
¼ σ0

nT
þ Pe

1þ ε

2φ

Z ∞

0

dτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðPeτÞ2=3

p

×
Z ∞

0

dq�q�4

360π
×
S0q�ð−τÞS

0
q�

S2q�
Φ2

q�ð−τÞðτÞ; ð4Þ

extending the low-density, Enskog prediction σ0 [19].
Here S0q denotes the derivative of the static structure factor,
q� ≔ qd and τ ≔ ωct, are the dimensionless wave number
and time, respectively, and q�ð−τÞ ¼ q�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðPeτÞ2=3

p
.

Numerically solving Eq. (4) together with the granular
MCT equations yields flow curves like those shown in
Fig. 2 as well as the critical Péclet numbers Peα, Pe�, and
Pe∞ [Fig. 1(a)]. For more details, see Ref. [31]. Indeed, we
observe all the regimes discussed above: (i) Newtonian
behavior, σ ¼ η_γ, for low densities and shear rates,
Pe < Peα; (ii) a yield stress above the glass transition
density, and thinning for Peα < Pe < Pe�; and (iii) the
Bagnold regime, σ ¼ B_γ2, for large shear rates, Pe>Pe�,
where the flow curves end at Pe¼Pe∞ [Figs. 2(c) and 2(d)].
Considering the generalized viscosity ηð_γÞ [Figs. 3(a) and
3(b)] makes the thinning and thickening terminology
particularly transparent. Note that we span many orders
of magnitude in shear rate and viscosity. The critical
density’s dependence on ε [Fig. 3(d)], φcðϵÞ, strongly
influences the flow behavior at fixed flow conditions if
the coefficient of restitution is varied (cf. Figs. 2 and 3).
The rheological regimes can be classified by R ≔
∂ ln ηð_γÞ=∂ ln _γ [color coded in Fig. 1(a)]. Here, R ¼ 0

(a) (b) (c) (d)

FIG. 2. Flow curves: shear stress σ as a function of shear rate _γ (a),(b) or Péclet number Pe (c),(d) for a number of packing fractions and
coefficient of restitution ε ¼ 0.8 (a),(c), and ε ¼ 0.3 (b),(d). The packing fraction increases from bottom (φ ¼ 0.48) to top (φ ¼ 0.58).
Critical Péclet numbers indicated by symbols Peα (þ), Pe� [filled square, omitted in (c),(d) for clarity] and Pe∞ (filled circle).
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corresponds to Newtonian rheology and R > 0 (R < 0) to
shear thickening (thinning) behavior [47].
Slow shear.—For small shear rates Pe → 0 in the linear

response regime, the glass transition divides the state space
into two qualitatively different phases. For relatively
low densities, φ < φc, GITT provides corrections of order
φ2 to the low-density, Enskog predictions [19] for the
viscosity. For densities approaching the glass transition, the
divergence of the relaxation time, τα, results in a divergent
viscosity, ηðφ↗φcÞ ∝ ½φcðεÞ − φ�−γðεÞ. The critical expo-
nent γðεÞ ∼ 2.5–2.3 weakly decreases with increasing
dissipation [46] and compares well with the experimental
value γ ≈ 2.35 [50]. Experimental values for φcðεÞ [51–53]
are compatible with our interpretation as a granular glass
transition as well. At the glass transition, φ≡ φcðεÞ, we
find a finite critical yield stress [cf. Fig. 3(d)], σcy, in the
range 6nT–9nT, compatible with experiments [52], and
comparable to theoretical predictions (σcy=nT ∼ 6 [54]) and
measurements (σcy=nT ∼ 10–15 [55]) for colloidal suspen-
sions. Thereby placing granular fluids firmly in the realm
of soft matter.
Fast shear.—For high Péclet numbers Pe → Pe∞, Eq. (4)

can be used to predict the Bagnold coefficient, B [cf.
Fig. 3(c)]. The latter increases with density and elasticity
(larger ε) as both trends make the temperature more
sensitive to changes in the shear rate. In particular, B
diverges as ε → 1.
As a first quantitative application of GITT, let us compare

our predictions to Bagnold’s original data [21]. To this end,
we extract the Bagnold coefficient, B, and the maximal
Péclet number, Pe∞, from his measurements [Fig. 1(c)]
[56]. Our kinetic theory proves to recover the qualitative
trends of both B and Pe∞ as a function of packing frac-
tion with no adjustable parameters. Considering that
Bagnold’s measurements have been shown to leave room
for improvement [60] the prediction of GITT compare
favorably. Qualitatively the strongly agitated flow curves
of Refs. [61,62] agree well with our discussion showing all
three regimes. However, note that the packing fraction in
the shear zone is unknown and uncontrolled in these
experiments in contrast to what is assumed here. More

tailored and careful measurements are needed to assess
GITT’s quantitative accuracy.
Depending on experimental conditions, additional

effects may become relevant that go beyond the model
considered in this Letter. On Earth (but not, e.g., on the
moon [63]) all granular flows are actually two-phase flows
of granular particles together with an interstitial fluid
(mostly air or water). At a sufficiently low packing fraction,
the effective viscosity of the molecular fluid becomes
relevant [59]. This will introduce another Newtonian
regime at small shear rates that crosses over to Bagnold
rheology when the stress induced by the granular particles
dominates over the viscous stress of the interstitial fluid.
For high shear rates, the Bagnold regime will obviously
not extend to _γ → ∞. At some point typical interparticle
forces are so high that interactions can no longer be
regarded as hard core. A finite interaction time compared
to the shear rate appears as a new timescale and destroys
Bagnold scaling [64]. For very high densities, approaching
random close packing, the rheology will be dominated by
the imminent jamming transition, which is not accounted
for in the present model. We prescribe a linear shear profile
and a homogeneous constant density and, therefore, nec-
essarily obtain monotonic flow curves. Nonmonotonic,
unstable flow curves and the associated discontinuous
shear thickening are possible in inhomogeneous systems
only [26,61,62,65].
Conclusion.—To summarize, we have discussed that the

rich rheology of a granular fluid is controlled by three
critical Péclet numbers (Table I): (i) Newtonian rheology
prevails for Pe < Peα. (ii) For intermediate shear rates,
Peα < Pe < Pe�, shear thinning reflects that the shear rate
is faster than the intrinsic relaxation rate of the fluid which
eventually results in a finite dynamic yield stress above the
glass transition density. The latter can be substantially
lower than the jamming transition commonly located at
random close packing φrcp ≈ 0.64 [66]. For low densities,
Peα ∼ 1 and at the same time Pe� ≪ 1 in the elastic limit
ε → 1. Under these conditions, Peα > Pe� and the thinning
regime vanishes altogether. (iii) For Pe� < Pe < Pe∞
strong shear heating leads to shear thickening behavior
which ultimately entails Bagnold scaling as the Péclet

(a) (b) (c) (d)

FIG. 3. (a),(b) Viscosity ηð_γÞ normalized by the Boltzmann viscosity η0 as a function of shear rate _γ. Same parameters as in Fig. 2.
(c) Bagnold coefficient B as a function of coefficient of restitution ϵ for a few packing fractions from φ ¼ 0.48 (bottom) to φ ¼ 0.57
(top). (d) Yield stress σcy (left axis, solid) at the glass transition packing fraction φc (right axis, dashed, from [44]) as a function of the
coefficient of restitution ε.
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number approaches its maximum, Pe → Pe∞. This con-
stitutes yet another shear thickening mechanism different
from other mechanisms discussed in the literature, namely
clustering [67,68], dilation [69,70], friction [71,72], or
steric effects [73]. The fact that Pe∞ is finite implies that
a kinetic theory to predict the Bagnold coefficient B must
be applicable at finite shear rates.
To support our arguments and to make them quantitative,

we presented a kinetic theory based on the ITT formalism
that recovers the phenomenology, covering many orders
of magnitude in shear rate and shear stress, or viscosity,
respectively. Earlier attempts at formulating ITT for inelastic
soft spheres [74] retain no dissipative effects on the same
level of approximation. For the inelastic hard sphere fluid
considered here, besides the implicit dependence of ΦkðtÞ
on the coefficient of restitution ε [46], Eq. (4) also includes
an explicit dependence on ε. Thereby we extended quanti-
tative predictions for the transport coefficients of a sheared
granular fluid beyond the low-density and low shear rate
regime amenable to standard kinetic theories.
The results presented here will be useful as constitutive

equations for modeling and simulating large scale granular
flows which demand a continuum description. In addition,
the Bagnold coefficient is needed for a recent kinetic theory
[75]. We also hope that the availability of a kinetic theory
for granular shear flow in a range of practically relevant
parameters will spur quantitative experiments.
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