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We compute the rheological properties of inelastic hard spheres in steady shear flow for
general shear rates and densities. Starting from the microscopic dynamics we generalize
the Integration Through Transients formalism to a fluid of dissipative, randomly driven
granular particles. The stress relaxation function is computed approximately within a
mode-coupling theory—based on the physical picture that relaxation of shear is dominated
by slow structural relaxation, as the glass transition is approached. The transient build-up
of stress in steady shear is thus traced back to transient density correlations which are
computed self-consistently within mode-coupling theory. The glass transition is signaled
by the appearance of a yield stress and a divergence of the Newtonian viscosity, charac-
terizing linear response. For shear rates comparable to the structural relaxation time, the
stress becomes independent of shear rate and we observe shear thinning, while for the
largest shear rates Bagnold scaling, i.e., a quadratic increase of shear stress with shear rate,
is recovered. The rheological properties are qualitatively similar for all values of ε, the
coefficient of restitution; however, the magnitude of the stress as well as the range of shear
thinning and thickening show significant dependence on the inelasticity.

DOI: 10.1103/PhysRevFluids.5.024305

I. INTRODUCTION

Understanding the rheology of granular fluids from a kinetic theory point of view has been of
interest from the earliest days of granular physics [1–8]. It has been established that the granular
Boltzmann or Boltzmann-Enskog equation [9,10] is a useful starting point to understand granular
gases at low density [4,7,9–12]. Various methods to extract the transport coefficients in linear re-
sponse, originally developed for molecular gases have been generalized to nonequilibrium granular
gases [7,13–15]. The general understanding is that the Navier-Stokes equations of hydrodynamics
(with small modifications [16]) provide a useful description of granular gas flow. Unfortunately, the
range of natural phenomena involving flow at low density and infinitesimal perturbations is much
smaller for granular media than it is for classical gas flow. Most granular flows occur at both high
volume fraction and significant shear rates. Indeed, every gravity-driven granular flow will start
from a granular solid at rest [6,17,18] with a packing fraction around the random close packing
density of the respective material. Only recently, first proposals to extend granular kinetic theory to
relevant densities have appeared [19–23].

Qualitative considerations have shown that the dynamic state diagram characterizing the rheo-
logical response of a granular fluid to shear (Fig. 1) is determined by several timescales [25]. The
Newtonian behavior—where shear stress σ = ηγ̇ is linearly related to the shear rate γ̇ —extends to
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FIG. 1. Protocol H (Shear heating increases the granular temperature): Dynamic state diagrams in the
plane spanned by shear rate, γ̇ , and packing fraction, ϕ, for several values of the coefficient of restitution,
ε, as indicated. The effective exponent R quantifying the shear rate dependence of the viscosity, η(γ̇ ) ∼ γ̇ R,
is color coded. Shear thickening (thinning) corresponds to R > 0 (R < 0) while R = 0 indicates Newtonian
behavior. The shear rate is normalized by the collision frequency ωc(ϕ, T0 ) of the unsheared system (at granular
temperature T0) with the prescribed volume fraction. The data for all figures are available as Supplemental
Material [24].

higher densities and shear rates as long as the shear rate is smaller than the intrinsic structural
relaxation rate τ−1

α . Beyond that, the shear stress becomes approximately independent of shear
rate, indicated by shear-thinning behavior. For even higher shear rates, shear heating will become
important which appears as shear thickening behavior. Ultimately Bagnold scaling, σ ∼ γ̇ 2, holds
for the largest shear rates.

In this contribution we will introduce a kinetic theory, namely, the granular Integration Through
Transients (GITT) formalism that is tailored to high densities and arbitrary shear rates of an
intrinsically out-of-equilibrium granular fluid. To be precise, GITT is expected to be most accurate
close to the granular glass transition [26–29], i.e., for packing fractions ϕ in the range 0.5 � ϕ �
0.6. In addition, GITT is not an expansion around zero shear and also not limited to almost elastic
particles. Our approach is based on the ITT formalism for thermalized colloidal dispersions [30–34]
and provides a framework to calculate flow curves, i.e., shear stress σ as a function of shear rate
γ̇ , beyond the linear response regime. To keep the paper at a manageable length we will use the
simplest assumptions and point out possible refinements for future work.

A first generalization of the ITT formalism from the overdamped Brownian dynamics of colloidal
suspensions to inertial, Newtonian dynamics has been obtained by Chong and Kim [32] and later
updated to the refined formulation of Fuchs and Cates [31] by Suzuki and Hayakawa [35]. In both
cases the lack of viscous damping in the inertial description necessitates the explicit introduction of
a thermostat. At least for the Gaussian isokinetic thermostat [36] used in the above references, the
details of the artificial thermostat explicitly appear in the final results. Suzuki and Hayakawa [21]
were the first employing an ITT calculation for inelastic soft spheres. Unexpectedly, they found that
no dissipative effects remain after applying the standard ITT approximations. Only after including
current correlation functions in addition to the density correlator did they find results that depend
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on the inelasticity of the particles. The substantially increased complexity due to the additional
observables has so far made applications of this approach difficult. On the upside, employing
dissipative interactions removes the need for an artificial thermostat.

In the following we will show that using frictionless inelastic hard spheres, it is much simpler
to retain dissipative effects and this allows us to develop a granular ITT formalism that captures
the qualitative behavior introduced above. The paper is organized as follows. We will start with an
informal outline of the model and derivations in Sec. II. Subsequently in Sec. III, we introduce the
microscopic equations of motion and the observables, i.e., correlation functions. The generalized
Green-Kubo relations that form the central part of the granular ITT formalism (GITT) will be
derived in Sec. IV. To evaluate the Green-Kubo relations, we need to compute the transient
correlator approximately in mode-coupling theory, as discussed in Sec. V. In Sec. VI we will present
a number of results that can be derived from the formalism developed here before concluding in
Sec. VII.

II. OUTLINE OF THE DERIVATION AND MAIN ASSUMPTIONS

As the following derivation comprises a number of technical steps, requiring a set of assumptions
and approximations, we are going to outline the main steps of the derivation here informally,
pointing to the relevant details in the later sections. We restrict our analysis to the simplest model
that captures the essential physics and relegate the discussion of some exemplary extensions to
Sec. VII.

Starting from a quiescent granular fluid, beginning at time t = 0 we impose a shear profile of the
form u(r) = r · k with a velocity gradient tensor k which is given by kαβ = γ̇ δαxδβy. To compute
the shear stress σ (γ̇ ), we work along the following road map:

(A) Specify the stationary state of the quiescent fluid
(B) Specify the stationary state of the sheared fluid which is reached for asymptotically long

times
(C) Generalize the Green-Kubo relation and integration through transients to granular fluids
(D) Couple stress and structural relaxation
(E) Compute the transient correlations within mode-coupling approximation.

A. The quiescent state

We consider a granular fluid comprising N monodisperse frictionless inelastic hard spheres of
diameter d , mass m = 1, and density n = N/V . The inelasticity is modeled by a constant coefficient
of normal restitution ε ∈ [0, 1) [2,37]. Note that the incomplete restitution in collision breaks time
reversal symmetry. We assume that despite the monodispersity the system will not crystallize at
any time. This choice is motivated by the observation that a small amount of polydispersity, just
enough to prevent crystallization [38], does not qualitatively alter the behavior of hard sphere
fluids but yields only small quantitative corrections [39]. Considering the monodisperse limit
simplifies the calculations, though. Note, however, that the quiescent fluid undergoes a granular
glass transition to an amorphous solid above a critical packing fraction ϕc(ε) [26,27,40,41]. Away
from the jamming transition, macroscopic granular particles are well approximated by hard-core
interactions. Considerable particle deformations are expected to become relevant in violent flow
conditions with very high impact speeds which consequently fall outside of our model.

The only intrinsic length scale in the system is the particle diameter d and the only energy
scale is given by the granular temperature T (we set the Boltzmann constant kB = 1 throughout).
The quiescent fluid therefore comprises a single timescale that may be given as the inverse of the
collision frequency ωc ∝ √

T /d [42]. The dimensionless measure of density is the packing fraction
ϕ := πnd3/6.

Considering molecular or colloidal fluids it is natural to assume that shear is applied to a
quiescent state in thermal equilibrium. For a granular system, there is no such uniquely defined
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quiescent fluid. In order to have a stationary granular fluid even before shear is applied, we imagine
the granular system to be under the influence of a homogeneous driving force. Realization of such
a driving force include fluidization by air [43–45] or water [46]. To concentrate on the granular
aspects of the rheology, we do not attempt to model the driving mechanism in any detail. Instead
we assume that it results in a homogeneous random driving force that injects a prescribed amount
of power, PD, into the system to compensate the energy dissipated in inelastic collisions [27,47,48].
The granular temperature, T0, of the quiescent fluid is then implicitly given by the power balance
[9,13,27,48,49],

PD = 
ωc(T0)T0, (1)

between driving and dissipation. Here 
 = 
(ϕ, ε) is nothing but the dimensionless dissipation
rate [50].

The ITT formalism, discussed below, allows to express ensemble averages in the strongly sheared
stationary state as expectation values with respect to the phase space distribution of a quiescent
reference fluid, �ref . In thermal equilibrium, the quiescent fluid is described by the canonical
distribution. Currently, a theoretical framework to determine �ref , comparable to the framework of
statistical ensembles in thermal equilibrium, does not exist. Only the marginal one-particle velocity
distribution function �(1)

v (c) is well characterized [9]. It is non-Gaussian but with rapidly decaying
tails, ln �(1)

v (c → ∞) ∝ −c3/2 and its dominant contribution can be expressed as an expansion in
Sonine polynomials around a Gaussian [9]. The exponentially decaying tails guarantee that the
second moment of the velocity distribution exists and the quiescent reference fluid displays a
well-defined granular temperature:

T0 := 1
3 〈c2〉, (2)

where the angular brackets denote the phase space average with respect to �ref .
The most severe approximation we make is to factorize the phase space distribution into a

positional and a velocity part �ref ≈ �(N )
r (r1, . . . , rN )�(N )

v (c1, . . . , cN ) although correlations are
known to exist [49]. Here ri denotes the particles’ positions and ci their peculiar velocities [cf.
Eq. (13a)]. Let us stress that in the ITT formalism we only need an explicit expression for �ref in the
unsheared state. The strong anisotropy of the distribution of relative collisional velocities ci j with
respect to the impact parameter in the sheared stationary state of a granular fluid [51], are—although
an interesting observation—unrelated to our factorization approximation. We furthermore assume
the precollisional velocity distribution to factorize in particles,

�(N )
v (c1, . . . , cN ) =

N∏
i=1

�(1)
v (ci ). (3)

While the postcollisional velocities are certainly highly correlated, this is a less severe approxi-
mation for the precollisional velocities [52,53]. Moreover we effectively assume a Gaussian form,
�(1)

v (c) ∝ exp(−c2/2T ). Note, however, that in many places we need only the second moment of
the distribution regardless of its overall form.

The spatial structure of a dense granular fluid has received comparably little attention. A structure
factor theory for granular fluids has not been developed to the best of our knowledge. Simulations
and experiments in two dimensions [54] indicate relatively modest deviations from the equilibrium
hard sphere structure. Keeping to the simplest approximations, we assume the spatial structure
in the granular fluid to be identical to the structure of an elastic hard sphere fluid in thermal
equilibrium, �(N )

r (r1, . . . , rN ) ∝ ∏
j<k �(r jk − d ). In summary, we effectively assume the phase

space distribution (but not the dynamics!) in the quiescent fluid to be of canonical form.

B. Stationary state of the sheared fluid

In contrast to colloidal suspensions where the particles are embedded in a host fluid that acts
as a heat bath, the granular fluid is not necessarily thermostated. Once shear is applied, the work
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expended to sustain the shear flow injects additional energy into the fluid. In colloidal suspensions
under normal conditions, this additional shear heating, σ γ̇ (naturally defined per volume), is readily
absorbed by the heat bath and the thermodynamic temperature of the suspensions remains constant.
For the granular fluid we are going to consider two protocols that deal in different ways with the
additional shear heating [55]:

Protocol H. keeping the driving power, PD, fixed between the quiescent and the sheared fluid such
that the shear heating increases the total injected power, PD + σ γ̇ /n = 
ωc(T )T . Using Eq. (1) to
eliminate PD, the power balance may be rewritten as

σ γ̇ + n
ωc(T0)T0 = n
ωc(T )T . (4)

The granular temperature in the sheared stationary state T > T0 will necessarily be elevated
compared to the quiescent fluid.

Protocol T. keeping the total injected power fixed, i.e., reducing the driving power in the sheared
fluid Pγ̇

D < PD, such that Pγ̇
D + σ γ̇ /n = PD. Note that this effective thermostatting can work only as

long as the shear heating is smaller than the initial driving power, σ γ̇ � nPD, i.e., it applies only up
to a maximum shear rate γ̇∞. For admissible shear rates, however, the granular temperature in the
sheared stationary state T ≡ T0 will remain unchanged from the quiescent fluid.

Note that GITT formalism developed below is not limited to these simple protocols. More
complicated power balances can easily be incorporated.

The timescale set by the shear rate γ̇ is to be compared to the intrinsic timescale, defining the
dimensionless Péclet number Pe := γ̇ /ωc(T ). Besides the coefficient of restitution ε, the only two
parameters which control the rheology [25] are ϕ and Pe. A dimensionless shear stress is naturally
defined as σ̂ = σ̂ (Pe; ϕ, ε) := σ/nT , independent of the granular temperature T . At low density,
ϕ � 1, and small shear rate, γ̇ → 0, we expect Newtonian rheology [25],

σ (ϕ � 1) =: σ0 = ηγ̇ , (5)

with a viscosity η(ϕ � 1) that is well approximated by the Enskog predictions, ηE (ϕ, ε), of Garzó
and Montanero [13].

Solving Eq. (4) for the granular temperature T in the sheared stationary state of Protocol H, one
finds [56]

T (Pe) = T0

(1 − Pe / Pe∞)2/3
, (6)

where Pe∞ is the maximum admissible Péclet number implicitly defined by [25]

Pe∞ = 
/σ̂ (Pe∞). (7)

Note that the stationary granular temperature T diverges as Pe → Pe∞, however, contrary to
Protocol T, this does not restrict the shear rate in Protocol H, γ̇ = ωc(T ) Pe, as the collision
frequency diverges together with the granular temperature.

C. Generalized Green-Kubo relation

At times t < 0 the fluid is assumed to be in the quiescent reference state at the granular
temperature T maintained by an associated driving power Pref

D = 
ωc(T )T according to Eq. (1).
At the time t = 0+ shear is switched on instantaneously and subsequently the system is given a
long—formally infinite—time to relax through a transient phase into the new sheared stationary
state, characterized by �ss. We do not control the transient phase in any way. In fact, it is to be
expected that the granular temperature will be time dependent in the transient regime. To keep the
temperature variations as small as possible, we assume the granular temperature of the reference
state to be identical to the granular temperature in the sheared stationary state, T . Note that in
Protocol H—where T > T0—this implies that the reference state is kept at a higher granular
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temperature than the quiescent unsheared fluid. Only in Protocol T, all granular temperatures are
equal, T = T0. This implies a reduction of the driving power from Pref

D to Pγ̇

D � PD < Pref
D .

The starting point of the ITT formalism [30,31] is the identity

�ss = �ref +
∫ ∞

0
dt ′ d�ref

dt
(t ′) (8)

expressing the phase space distribution function in the sheared stationary state, �ss, in terms of the
distribution function of the unsheared system, �ref . The evolution of �ref into �ss is then calculated
by an integration through the eponymous transient in time. As the reference distribution is stationary
under the quiescent dynamics, only the shear part of the dynamics contributes to the time derivative.
With the assumption of a canonical �ref ∝ exp(−Eint/T ), written in terms of the internal energy of
the fluid Eint (cf. Appendix A), one finds [31,32]

d�ref

dt
(t ′) = −γ̇ σ el

xy(t ′)�ref/T . (9)

Here σ el
xy denotes the Irving-Kirkwood expression for the shear stress of elastic hard spheres in terms

of the phase space variables [57].
The macroscopic shear stress σ ≡ −〈σxy〉ss/V in the sheared stationary state may then be

evaluated in terms of a generalized Green-Kubo integral (cf. Sec. IV)

σ = γ̇

V T

∫ ∞

0
dt

〈
σxy(t = 0)

∣∣σ el
xy(t )

〉
, (10)

expressed in terms of a correlation function in the unsheared reference state. The microscopic
granular shear stress σxy = σ kin

xy + σ int
xy is composed of a kinetic part, σ kin

xy , and a collisional part,
σ int

xy (cf. Appendix B). The generalized Green-Kubo relation (10) is formally identical to the
colloidal results [30,31]. Note that the reference state does not carry a shear stress 〈σxy〉 ≡ 0 and
that the microscopic collisional stress, σ int

xy = 1+ε
2 σ int,el

xy , Eq. (B5), in a configuration of granular
particles is lower than the stress of the identical configuration of elastic particles due to the
incomplete restitution of momentum upon collision [58]. Furthermore, the dynamics of the stress
autocorrelation function 〈σxy|σxy(t )〉 will be affected by the granular dynamics and its broken
time-reversal symmetry

Note that we have lost all reference to the distribution function in the sheared stationary state,
�ss. Instead, the effect of shear has been transferred to the dynamics σxy(t ) in the transient buildup
of the stationary state. This is fundamentally different from, say, the Chapmann-Enskog procedure
where one attempts to describe the phase space distribution function in the sheared stationary state
perturbatively [42]. Let us stress that in deriving Eq. (10) at no place have we assumed that the
shear rate or the shear stress are small. Consequently, the generalized Green-Kubo relation is not
an expansion in small perturbations of the reference state. For colloids (ε = 1) it is exact and its
validity for granular fluids is only restricted by (1) the degree to which Eq. (9) is fulfilled and (2) the
magnitude of the residual effects of the change in driving power if applicable. We stress, however,
that no entropy arguments have been employed that are a priori restricted to thermal equilibrium.
This is to be contrasted with the formally very similar Green-Kubo relations derived by Ronis that
are based on entropy maximization and constitute but the lowest order in an expansion in γ̇ [59,60].
Consequently, the Green-Kubo relation (10), although it contains an explicit prefactor γ̇ , is able to
capture nonlinear constitutive laws including shear thinning and shear thickening [25,30]. Applying
Ronis’ approach to a homogeneously cooling granular fluid [61], instead, captures Newtonian
rheology only.

D. Coupling of stress and structural relaxation

The time evolution of the transient stress autocorrelation function is not known. However, in
dense fluids we may assume it to be enslaved to the slow structural relaxation encoded in the glassy
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dynamics of the density fluctuations [30,31]. Note, however, that the approximation introduced
below does not capture the jamming transition. This implies that densities are restricted to be
sufficiently far below the random close packing density ϕrcp ≈ 0.64 [62] not to be dominated by
the imminent jamming transition. The slow relaxation is intrinsically a collective phenomenon
that occurs on macroscopic scales [63]. To this end we may adopt a coarse grained, continuum
description in terms of a continuous density field ρ(r). To maintain a continuum description, we
need to make sure that we do not impose excessive velocity gradients, i.e., we need to require that
the Knudsen number Kn < 1. Here we can take the Péclet number as a proxy for the Knudsen
number [64] and the fact that the Péclet number is limited Pe � Pe∞ [25] ensures that we are not
limited in shear rates as long as the density is sufficiently high such that Pe∞ < 1.

It has been noted that shear flow distorts plane waves [30,65], so that translational invariance
holds only in the comoving frame [31]. Therefore, we define density correlations

�k(t ′, t ) := N〈ρk(t ′)|ρk(t−t ′ )(t )〉/Sk(t ′) (11)

as the overlap of a density fluctuation ρk with wave vector k at time t ′ with another density
fluctuation at a later time t > t ′ with the advected wave vector k(t − t ′) = k · [1 − k(t − t ′)]. The
averages are evaluated with the time-independent distribution �ref of the reference state. However,
the full time evolution, including shear, is not stationary in the transient regime. Therefore, the
transient correlators in general depend on two time arguments, while the equal time correlation
Sk(t ′) := N〈ρk(t ′)|ρk(t ′)〉 depends on the waiting time t ′. It turns out we are only ever going to
make use of a zero waiting time, t ′ = 0, and simplify notation to �k(t ) ≡ �k(0, t ). Incidentally,
the zero waiting time structure factor Sk(0) ≡ Sk is identical to the structure factor in the quiescent
reference state.

In comparing wave vectors at time t and time t = 0 one may equivalently regard either point
in time as the one defining wave vector k of interest and then determine the advected wave vector
k(±t ). While fixing the wave vectors at t = 0 to be advected to time t seems natural [30], it was
later found to be advantageous to fix the wave vector at time t and relate it to the wave vector k(−t )
at time t = 0 through backwards advection [31,35].

Momentum conservation dictates that the stress tensor couples to pairs of density modes,
ρkρ−k. The time evolution of the pair modes is determined by a four-point density correlator,
which is approximately factorized into products of two-point density correlators. By way of this
approximation we have transferred the generalized Green-Kubo relation from its natural formulation
in terms of the stress autocorrelation function, Eq. (10), to a formulation, albeit approximate, in
terms of the density autocorrelation [cf. Eq. (33)]

σ = σ0 + 1 + ε

4
× γ̇

T

∫
d3k

(2π )3

∫ ∞

0
dt

Vσ
k(−t )Vσ

k

S2
k

�2
k(−t )(t ). (12)

The coupling between stress and density is given by anisotropic, wave number-dependent coupling
constants Vσ

k , which will be derived explicitly in Sec. IV. Note that the transient correlator, �k(−t )(t ),
implicitly depends on the coefficient of restitution ε and the shear rate γ̇ . However, we also retain
the explicit dependence of the shear stress σ on the coefficient of restitution ε, as a result of the
nonlinearity of the collision rule. If we had modeled the dissipative collisions by a linear viscous
law, we would have lost all dissipative effects at this point. For details see Appendix C. Note that due
to the approximation in terms of density pairs, the generalized Green-Kubo integral is of the order
ϕ2. In order to extend the validity of Eq. (12) to lower densities, we have added the low-density
contribution σ0, Eq. (5).

The spatial structure of the isotropic quiescent reference fluid—partially encoded in the static
structure factor Sk—is, in general, also a function of the coefficient of restitution ε. Note that the
anisotropy of the sheared state is encoded in two ways in Eq. (12): (1) by the anisotropic form of
the coupling constant, Eq. (32) and (2) by the anisotropy of the advected wave vector k(−t ). By
virtue of the ITT approach, however, it is sufficient to consider the spatial structure of the isotropic

024305-7



W. TILL KRANZ et al.

reference state. This is to be contrasted with theoretical approaches that approximate the distribution
of the sheared stationary state, �ss, more directly, including its spatial anisotropy [51,66].

E. Transient density correlations

The dynamics of the transient density correlator may be evaluated self-consistently in the
framework of mode-coupling theory. The derivation of the equation of motion for �k(t ) is quite
technical and constitutes a major part of this contribution (cf. Sec. V). In essence, we derive the
linearized, compressible, fluctuating hydrodynamic equations taking into account the wave vector
advection due to shear.

The first step is to take care of the conservation laws of particle density and momentum with help
of the Mori-Zwanzig projection operator formalism, following closely Suzuki and Hayakawa [35].
The next step is a mode-coupling approximation for the dynamics of the resulting memory kernel,
assuming that the decay is dominated by pairs of density fluctuations. Thereby the memory kernel
is expressed in terms of four-point density correlations, which are subsequently factorized. We end
up with a set of self-consistent equations for the time-dependent, transient correlations of particle
densities and currents.

As compared to mode-coupling theories in a quiescent state, an additional complication arises,
because the applied shear breaks the isotropy of the fluid. Solving the full set of equations is
challenging even numerically [67] and as a first step we are not going to attempt it. Previous studies
of glass forming colloidal dispersions have shown that density correlations remain comparably
isotropic [68,69]. Importantly, this does not rule out finite shear elements of the stress tensor,
which are encoded in the mode-coupling vertices. [32] have argued that the essential anisotropy
in Eq. (12) is encoded in the coupling constants Vσ

k such that it is sufficient to consider an isotropic
approximation for the transient correlator �k (t ) that only depends on the modulus but not on the
direction of the wave vector. The resulting equations are solved numerically by iteration.

III. MICROSCOPIC DYNAMICS

A. Pseudo-Liouville operator

For the implementation of the imposed linear shear profile, u(r) = r · k we use the Sllod
equations [36]. We sketch their derivation for Hamiltonian systems in Appendix A. In terms of
the dissipative hard sphere interactions and for the given shear profile they provide the equations of
motion for the particles’ positions, ri(t ), and peculiar velocities, ci(t ),

ṙi = ci + ri · k, (13a)

ċi = dci

dt

∣∣∣∣
coll

+ ξi(t ) − ci · k. (13b)

Here dci/dt |coll denotes the effect of dissipative hard sphere collisions and we have used the property
k · k ≡ 0. Eq. (13a) implicitly defines the peculiar velocity ci, whereas Eq. (13b) describes that the
peculiar velocity may change for one of three reasons: First, due to collisions with other particles,
secondly, due to the random driving force, and, finally, if the particle moves in gradient direction,
the flow velocity with respect to which its peculiar velocity is defined changes, effectively changing
the peculiar velocity. The random force ξi(t ) [47,70] has zero mean ξi = 0 and variance

ξα
i (t )ξβ

j (t ′) = 2
3 PDδi jδ

αβδ(t − t ′). (14)

Note that in the unsheared reference system, the peculiar velocities are identical to the laboratory-
frame velocities, vi = ṙi ≡ ci.

The above dynamics can be rephrased in terms of a (forward in time) effective pseudo-Liouville
operator L+ that generates the time derivative of arbitrary functions A(X ) on the phase space X ,
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dA/dt ≡ L+A. In the unsheared reference system the dynamics [41]

L+
ref = L0 + L+

I + L+
D (PD) (15)

consists of free streaming, iL0 = ∑
j c j · ∇ j , random driving, L+

D (PD) = PD
∑

j ∂
2
c j

, and binary
collisions iL+

I = ∑
j<k iT +

jk , where

iT +
jk = −(r̂ jk · v jk )�(−r̂ jk · v jk )δ(r jk − d )(b+

jk − 1) (16)

denotes the inelastic binary collision operator [37,71] that explicitly breaks time-reversal symmetry.
Here the operator b+

jk implements the inelastic collision rule [72], r jk := r j − r j , likewise for v jk ,
and �(x) denotes the Heaviside step function.

The Sllod equations give rise to an additional contribution to the Liouville operator Lγ̇ = Lγ̇r +
Lγ̇c [32], with

iLγ̇r =
∑

j

r j · kt · ∇ j, iLγ̇c = −
∑

j

c j · kt · ∂

∂c j
(17)

such the full dynamics in the sheared state is generated by L+ = L+
ref + Lγ̇ .

Note that in contrast to all the other parts of the Liouville operator, the binary collision operator,
Eq. (16), is formulated in terms of the laboratory-frame velocities vi as opposed to the peculiar
velocities ci. By virtue of the generalized Green-Kubo relation (10), however, all matrix elements of
the binary collision operator in the following will be evaluated in the unsheared reference state where
the two frames of reference coincide. In the calculation of the stress tensor within the Chapman-
Enskog approach [42], the mismatch between the vi and ci is crucial for the collisional part of the
stress induced by the particles’ finite size. In the ITT approach, the finite size of particles is encoded
in a nontrivial structure factor Sk .

B. Ensemble averages in the reference system

The ensemble average of an observable A(X ) in the reference system is defined as a scalar product

d〈A〉
dt

= 〈iL+
ref A〉 =

∫
dX�ref (X )L+

ref A(X ) =: (�ref ,L+
ref A) (18)

allowing us to introduce the Liouvillean L+
ref as the adjoint of L+

ref ,

(L+
ref�ref , A) = (�ref ,L+

ref A), (19)

acting on the phase space distribution �ref . With respect to two observables A1(X ), A2(X ), we write
correlation functions as another scalar product,

〈A1|A2〉 :=
∫

dX�ref (X )A∗
1(X )A2(X ), (20)

where the asterisk denotes complex conjugation.
We will be concerned with a continuum description of the particle density and momentum current

using the following definitions:

ρ(r, t ) = 1

N

∑
i

δ[r − ri(t )], j(r, t ) = 1

N

∑
i

ciδ[r − ri(t )]. (21)

Note that the current j is defined with respect to the peculiar velocities ci [32,35]. We will use the
spatial Fourier transforms ρq(t ) = FT[ρ](q, t ), and jq(t ) = FT[ j](q, t ) [73].
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IV. GRANULAR INTEGRATION THROUGH TRANSIENTS

The transient phase space distribution function evolves in time according to the Liouville
equation

�(t ) = exp(−itL+)�ref , (22)

where L+ is the adjoint of the full Liouville operator L+ = L+
ref + Lγ̇ . This together with Eq. (8)

allows us [31] to rewrite the sheared steady-state phase space density �ss in the exact form

�ss = �ref +
∫ ∞

0
dt exp(−itL+)i�L+�ref , (23)

where �L+ = Lγ̇ + L+
D (�PD), and L+

D (�PD) = −�PD
∑

j ∂
2
c j

. The necessary reduction in driving

power, �PD = Pγ̇
D − PD, is to keep granular temperature in the sheared stationary state fixed at the

granular temperature of the reference state, T .
We have argued in Sec. II C, Eq. (9), that �−1

ref iLγ̇ �ref = −γ̇ σ el
xy/T for a canonical approximation

to �ref . With the same assumptions we find for the effect of the change in driving power
�−1

ref iL+
D (�PD)�ref = −3�PDδK/T where

δK = 1 − 1

N

∑
j

c2
j

3T
. (24)

Using Eq. (18) to calculate the expectation value, 〈A〉ss := ∫
dX�ss(X )A(X ), of any observable

A(X ) in the sheared steady state, we find

〈A〉ss = 〈A〉 − γ̇

T

∫ ∞

0
dt

〈
σ el

xy

∣∣A(t )
〉 − 3�PD

T

∫ ∞

0
dt〈δK|A(t )〉. (25)

For any A analytic in the velocities, the last term, 〈δK|A(t )〉, will vanish due to the Gaussian
property of the velocity distribution. Formally, we establish a generalized Green-Kubo relation
which resembles the one for Brownian particles [30,31]:

〈A〉ss = 〈A〉 − γ̇

T

∫ ∞

0
dt

〈
σ el

xy

∣∣A(t )
〉
. (26)

Adapting an argument by Chong and Kim [32], we can show that for any observable A, we have〈
σ el

xy

∣∣ exp(itL+)A
〉 = 〈

σ el
xyQ

∣∣ exp(itQL+Q)QA
〉
, (27)

where Q = 1 − P and

P = N
∑

q

1

Sq
|ρq〉〈ρq| + N

T

∑
q

| jq〉〈 jq| (28)

projects onto the hydrodynamic fields. Now, making a mode-coupling approximation,

exp(itQL+Q) ≈ N2
∑
k,p

∣∣ρk(−t )ρp(−t )
〉�k(−t )(t )�p(−t )(t )

SkSp
〈ρkρp|, (29)

we can express the Green-Kubo relation in terms of the transient correlator �q(t ), Eq. (11),

〈A〉ss ≈ 〈A〉 − γ̇

2T

∑
k

∫ ∞

0
dtVσ

k(−t )WA
k �2

k(−t )(t ), (30)

where

WA
k = N〈ρkρ−k|A〉/S2

k, (31)

Vσ
k = N

〈
σ el

xy

∣∣ρkρ−k
〉 = −T

kxky

k
S′

k, (32)
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where the prime denotes the derivative with respect to the wave vector. The last equality has
been derived from thermodynamic arguments in Ref. [30]. Here we present a kinetic derivation
in Appendix B. Let us mention that Eq. (30) could be used to get the distorted structure under shear
choosing A = |ρk|2.

In particular, for A = σxy we find (cf. Appendix B) Wσ
k = 1+ε

2 Vσ
k /S2

k , i.e., for the macroscopic
shear stress,

−〈σxy〉ss/V = γ̇ T
1 + ε

4

∫
d3k

(2π )3

∫ ∞

0
dt

k2
x kyky(−t )

kk(−t )
× S′

k(−t )S
′
k

S2
k

�2
k(−t )(t ). (33)

The above expression for the shear stress in terms of the transient density correlation constitutes our
first major result. The formula (33) for the granular shear stress and the approximations required
to derive it, closely corresponds to the results and approximations for thermalized colloidal glass
formers [31]. While it is unknown how to systematically improve Eq. (33), it is based on physical
intuition and has been shown to be good for quiescent and shear-driven dense Brownian particle
systems. Our result shares a number of features with the ITT expression for thermalized colloids.
First, the structural correlations encoded in the transient density correlator determine the evolution
of stresses under shear. Second, shearing decorrelates density fluctuations by the advection to shorter
wavelengths where they decay more rapidly. The occurrence of ε quantifying the dissipation is
specific to granular media. It enters the mode-coupling vertex as found previously in granular mode-
coupling theory [41]. Besides σ0, which is neglected in dispersions, the role of temperature differs
in both approaches. While for thermalized Brownian particles, the thermodynamic temperature is
set by the heat bath and enters via the initial canonical distribution, in the present approach to a
fluidized granular medium, the granular temperature T is determined from the power balance either
in Protocol H or Protocol T.

For thermalized colloids, two main approximations led to Eq. (33) with ε = 1: (1) the focus on
structural relaxation, Eqs. (29), and (2) the decoupling of higher order correlations. For granular
fluids, ε < 1, we had to make mainly two additional approximations: (1) assume, Eq. (9), that the
elastic Irving-Kirkwood shear stress is still the relevant observable in the correlation function of
the generalized Green-Kubo integral, Eq. (10), and (2) assume the factorization between spatial and
velocity degrees of freedom in calculating the coupling constants Vσ

k , Eq. (32).
Note that the anisotropy of the sheared state is encoded in two ways in Eqs. (33): (1) by the

anisotropic form of the coupling constant, Eq. (32), and (2) by the anisotropy of the advected wave
vector k(−t ). Once we know the transient correlator �k(t ), this allows us to determine the shear
stress for a given shear rate γ̇ . In terms of the dimensionless time t∗ := ωct and the dimensionless
wave number k∗ := kd we find a dimensionless stress

−〈σxy〉ss/NT = Pe
1 + ε

2ϕ

∫
d3k∗

96π2

∫ ∞

0
dt∗ k∗2

x k∗
y k∗

y (−t∗)

k∗k∗(−t∗)
× S′

k∗(−t∗ )S
′
k∗

S2
k∗

�2
k∗(−t∗ )(t

∗) (34)

manifestly temperature independent.

V. MODE-COUPLING THEORY FOR THE TRANSIENT CORRELATOR

The dynamics of the transient density correlator may be evaluated self-consistently in the
framework of mode-coupling theory. To do so, we first isolate the conservation laws from the time
evolution (Sec. V A) and subsequently formulate equations of motion for the transient correlators
�q(t ) and Hq(t ) in terms of memory kernels (Sec. V B). These are approximated within mode-
coupling theory, resulting in closed equations for the transient correlators (Sec. V C). The latter are
solved numerically, which can only be done within an isotropic approximation (Sec. V D).
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A. Separating the slow dynamics

For the observables Aq ∈ {ρq, jq} we define the propagator U(t ) via

Aq(t )(t ) = exp(itL+) exp(−itLγ̇r )Aq =: U(t )Aq, (35)

where U(t ) �= exp[it (L+ − Lγ̇r )] because L+ and Lγ̇r do not commute. Following Suzuki and
Hayakawa [35] we write

d

dt
U(t ) = exp(itL+)iL̃+ exp(−itLγ̇r ), (36)

where L̃+ = L+ − Lγ̇r . In order to separate the slow dynamics, we define the projectors

P (t ) := N
∑

k

∣∣ρk(t )
〉〈
ρk(t )

∣∣/Sk(t ) + N
∑

k

∣∣ jk(t )

〉〈
jk(t )

∣∣/T, (37)

and Q(t ) = 1 − P (t ). Next, we can expand the time derivative of the propagator as

d

dt
U(t ) = US (t )iL̃+ exp(−itLγ̇r ) + Q(0)Û(t, 0)R(t ) +

∫ t

0
dτUS (τ )iL̃+Q(τ )Û(t, τ )R(t ), (38)

where

US (t ) := U(t ) exp(itLγ̇r )P (t )

= N
∑

k

∣∣ρk(t )(t )
〉〈
ρk(t )

∣∣/Sk(t ) + N
∑

k

∣∣ jk(t )(t )
〉〈

jk(t )

∣∣/T (39)

is the propagator of the slow modes,

Û(t, τ ) := exp
(−iτL†

γ̇r

)
Ũ(t, τ ) exp

(
itLγ̇r

)
, (40)

Ũ(t, τ ) := exp−

[∫ t

τ

dt ′ exp
(
it ′Lγ̇r

)
Q(t ′)iL̃+ exp

(−it ′Lγ̇r

)]
, (41)

and exp− is the time-ordered exponential. Finally, R(t ) := Q(t )iL̃+ exp(−itLγ̇r ), is the fluctuating
force operator. In the last term of Eq. (38), the conventional small strain approximation [31]
exp(−itLγ̇r ) ≈ exp(−itL†

γ̇r
) has been employed. It reduces the consequences of shearing in the

equations of motion of �q(t ) to the single effect of the advection of wave vectors, as holds (without
approximation) in the formula (34) for the stress. Besides this approximation, Eq. (38) is exact. Note
that the second term in Eq. (38) will never contribute due to the orthogonal projector Q(0).

B. Equation of motion for the transient correlators

The continuity equation for the density, iL̃+ρq(t ) = iq(t ) · jq(t ), implies

d

dt
�q(t ) = q(t ) · Hq(t )/Sq, (42)

where

Hq(t ) := iN〈ρq| jq(t )(t )〉 (43)

is the transient density-current correlator. Consider its time derivative

d

dt
Hq(t ) = iN

〈
ρq

∣∣∣∣ d

dt
U(t ) jq

〉
, (44)

which can be expanded with the help of Eq. (38). For the first term we find

US (t )iL̃+ jq(t ) = �
ρ j
q(t )ρq(t )(t ) + jq(t )(t ) · Ωq(t ), (45)
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where

�ρ j
q := N〈ρq|iL̃+ jq〉/Sq, (46a)

�λμ
q := N

〈
jλq

∣∣iL̃+ jμq
〉
/T . (46b)

The third term yields for the fluctuating force Rq(t ) := R(t ) jq:

US (τ )iL̃+Q(τ )Û(t, τ )Rq(t ) = −Lq(t, τ )ρq(τ )(τ ) − jq(τ )(τ ) · Mq(t, τ ), (47)

where

Lq(t, τ ) := −N
〈
ρq(τ )

∣∣iL̃+Q(τ )Û(t, τ )Rq(t )
〉
/Sq(τ ), (48a)

Mλμ
q (t, τ ) := −N

〈
jλq(τ )

∣∣iL̃+Q(τ )Û(t, τ )Rμ
q(t )

〉
/T (48b)

are two memory kernels.
The elements of the frequency matrices are known from the literature: �ρ j

q = iqC2
q where

C2
q = T

Sq

[
1 + ε

2
+ 1 − ε

2
Sq

]
(49)

is the (squared) speed of sound [41], and

�q = μq1 + k where [74] μq = 1 + ε

3
ωc[1 − j0(qd )] (50)

and j0(x) is the zeroth-order spherical Bessel function [75].
The equations of motion for the correlators, �q(t ) and Hq(t ), can be written as

Sq
d

dt
�q(t ) = q(t ) · Hq(t ) (51a)

and

d

dt
Hq(t ) + q(t )C2

q(t )Sq�q(t ) + μq(t )Hq(t ) + k · Hq

+
∫ t

0
dτLq(t, τ )Sq(τ )�q(τ ) +

∫ t

0
dτHq(τ ) · Mq(t, τ ) = 0. (51b)

Were it not for the advected wave vector, Eqs. (51) could be combined into a single wave equation
describing the propagation of sound modes by taking the time derivative of Eq. (51a). However,
because of the time dependence of the wave vector we obtain an additional term in

Sq�̈q(t ) = q · Ḣq(t ) − q(t ) · k · Hq(t ), (52)

spoiling this simplification. It will nevertheless prove useful to rewrite Eqs. (51) with help of the
above relation [Eq. (52)] in the form

�̈q(t ) + νq(t )�̇q(t ) + q2(t )C2
q(t )�q(t ) + 2q · k · Hq(t )/Sq

+ q(t ) ·
∫ t

0
dτLq(t, τ )

Sq(τ )

Sq
�q(τ ) + q(t ) ·

∫ t

0
dτMt

q(t, τ ) · Hq(τ )/Sq = 0, (53)

where [41]

νq = 1 + ε

3
ωc[1 + 3 j′′0 (qd )] (54)

is known as the Enskog term [76] and the double primes denote the second derivative. The first
three terms in Eq. (53) describe sound waves with an advected wave vector q(t ). The fourth term is
proportional to γ̇ and vanishes in the limit of no shear. All effects not local in time are contained
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in the memory kernels Lq and Mq. To make progress we evaluate the memory kernels in terms of a
mode-coupling approximation.

C. Mode-coupling approximation

We approximate Û(t, τ ) with a mode-coupling ansatz [31],

Û(t, τ ) ≈ P2(τ )Û(t, τ )P2(t )

≈ N2
∑
k,p

∣∣ρk(τ )ρp(τ )
〉�k(τ )(t − τ )�p(τ )(t − τ )

Sk(t )Sp(t )

〈
ρk(t )ρp(t )

∣∣, (55)

where

P2(t ) := N2
∑
k,p

∣∣ρk(t )ρp(t )
〉〈
ρk(t )ρp(t )

∣∣/Sk(t )Sp(t ). (56)

This immediately yields Lq(t, τ ) ≈ 0 as the left vertex ∝ 〈ρq(τ )|iL̃+Q(τ )ρk(τ )ρp(τ )〉 = 0 due to
parity. For the second memory kernel we find

Mλμ
q (t, τ ) ≈ N

T

∑
k,p

Sk(τ )

Sk(t )
Vλ

qkp(τ )Wμ

qkp(t )�k(τ )(t − τ )�p(τ )(t − τ ). (57)

Note that that the memory kernel, Eq. (57), is defined in terms of the transient correlators
�k(τ )(t − τ ) ≡ �k(τ )(0, t − τ ). Although the appearance of the relative time t − τ suggests an
assumption of time translation invariance, no such assumption is made, and, in fact, it would be
incorrect during the transient onset of shear. The vertices,

Vλ
qkp(t ) = N

〈
jλq(t )

∣∣iL̃+Q(t )ρk(t )ρp(t )
〉/

Sk(t ), (58a)

Wλ
qkp(t ) = N

〈
ρk(t )ρp(t )

∣∣∣∣Q(t )iL̃+ jλq(t )

〉/
Sp(t ), (58b)

are, again, known from the literature [41]. They depend on time only parametrically because of
the advected wave vector [Vqkp(t ) ≡ Vq(t )k(t )p(t )]. Therefore, the calculation relating them to the
quiescent static structure factor of hard spheres is unaffected,

iVλ
qkp = T

N
Sp[kλnck + pλncp]δq,k+p, (59a)

iWλ
qkp = 1 + ε

2

T

N
Sk[kλnck + pλncp]δq,k+p. (59b)

This closes the equations of motion as soon as we know the static structure factor Sq.
The solution of Eqs. (51) together with Eq. (57) and the explicit expressions for the vertices,

Eqs. (59), provides a nontrivial prediction of the transient correlator �q(t ). In particular, it captures
the glass transition of the quiescent granular fluid for vanishing shear [27]. It is by no means obvious
that a granular fluid, where the dissipative interactions violate detailed balance, is described by
equations of motion that share the same structure as the equations of motion for a fluid comprising
elastic, thermalized particles [32] and are straightforwardly related to the equations for Brownian
suspensions [31]. Note, however, that the speed of sound, Cq, the viscosity term μq, and, most
importantly, the memory kernel Mq(t, τ ) all depend on the coefficient of restitution ε. As discussed
in Ref. [25], the prescribed shear rate always melts the glass but the interplay of the structural
relaxation rate and the shear rate still determines a large part of the rheology through the generalized
Green-Kubo relation (33). The self-consistent equations for the transient correlators—valid within
the approximations outlined above for a granular fluid at high densities and arbitrary shear rates—
are our second major result. Written in terms of dimensionless time, t∗ := ωct , and wave vector,
k∗ := kd , these equations are manifestly temperature independent, testament to the fact that changes
in granular temperature cannot change the qualitative behavior of hard sphere fluids.
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D. The isotropic approximation

Applying shear in a prescribed direction breaks the isotropy of the fluid, and this is reflected
in the anisotropy of Eqs. (51). Note that we require isotropy in terms of the wave vector k at
time t , not in terms of the initial wave vector k(−t ). The wave vector advection is then taken
into account in a directionally averaged fashion as well [32,77], 1

4π

∫
d k̂k2(−t ) =: k̄2(−t ), i.e.,

k̄(−t ) = k
√

1 + (γ̇ t )2/3. With an isotropic �k̄(−t )(t ), the Green-Kubo relation (33) will depend
only on the isotropic part of the vertex product

1

4π

∫
d k̂Vσ

k(−t )Vσ
k = T 2k2

15
√

1 + (γ̇ t )2/3
S ′̄

k(−t )S
′
k, (60)

i.e., with an isotropic transient correlator �k (t ), the generalized Green-Kubo relation for a sheared
granular fluid reads [78]

σ = σ0 + 1 + ε

2
γ̇ T

∫ ∞

0

dt√
1 + (γ̇ t )2/3

∫ ∞

0

dkk4

60π2
×

S ′̄
k(−t )

S′
k

S2
k

�2
k̄(−t )(t ). (61)

Averaging Eq. (51a) over the directions q̂(t ) we have

Sq�̇q(t ) = q(t )q̂(t ) · Hq(t ), (62)

which shows that the density correlator only couples to the longitudinal part, q̂(t ) · Hq(t ), of the
density-current correlator. Thereby Hq(t ) is eliminated as an independent dynamical quantity in
Eqs. (51) and allows recovery of the nonlinear wave equation (cf. Appendix D),

�̈q(t ) + νq(t )�̇q(t ) + q2(t )C2
q(t )�q(t ) + q2(t )C2

q(t )

∫ t

0
dτmq(t, τ )�̇q(τ ) = 0, (63)

a single scalar integro-differential equation replacing the four equations (51). Here the damping term
νq, Eq. (54), and the speed of sound, Cq, have become isotropic and the dimensionless longitudinal
part of the memory kernel, mq(t, τ ) := q(t )q(t ) : Mq(t, τ )/q2(t )C2

q(t ), is given below by Eq. (64).
Had we, instead, assumed that the directional distribution of the initial wave vectors, q, were uniform
and let it evolve into a nonuniform distribution of wave vectors q(t ) at time t , the damping term νq

would be supplemented by an additional, wave-number independent contribution [35].
In isotropic approximation we have to leading order [q̂(t ) · k(t )]/q(t ) � q̂ · k/q and find

mq(t, τ ) = Aq̄(t )(ε)
Sq̄(t )

nq2

∫
d3k

(2π )3
Sk̄(τ )Sp̄(τ )

× [
(q̂ · k)nck̄(t ) + (q̂ · p)ncp̄(t )

][
(q̂ · k)nck̄(τ ) + (q̂ · p)ncp̄(τ )

]
×�k̄(τ )(t − τ )�p̄(τ )(t − τ ). (64)

For vanishing shear, γ̇ → 0, the memory kernel reduces to the one calculated in Ref. [41] and

A−1
q (ε) = 1 + 1 − ε

1 + ε
Sq. (65)

E. Numerical solutions

The granular mode-coupling equations (63), (64) can in general be solved only numerically. The
same applies to the generalized Green-Kubo relation (61). To this end we need the static structure
factor and the sound damping constant in the reference state. For the structure factor we resort to
the Percus-Yevick expression [79] for elastic hard spheres to be consistent with the discussion of
the granular glass transition [27,41]. One could just as well use structure factors from numerical
simulations of the reference state, given they are available at sufficient quality. The dependence on
the coefficient of restitution manifests itself primarily in the height of the first peak. For the sound
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FIG. 2. Protocol H (Shear heating increases the granular temperature). For several values of the coefficient
of restitution ε (columns, as indicated) and several packing fractions (color coded) from ϕ = 0.48 (yellow,
bottom) to ϕ = 0.60 (black, top): (First row) Flow curves, shear stress σ as a function of shear rate γ̇ ,
normalized by the density n and the granular temperature at zero shear, T0. (Second row) Viscosity η relative
to the Boltzmann viscosity η0(T0), Eq. (66) as a function of shear rate γ̇ . (Third row) Stationary granular
temperature T , relative to the initial granular temperature, T0, at zero shear as a function of shear rate γ̇ .
The dotted lines indicate T/T0 ≡ 2. The shear rate is normalized by the collision frequency ωc(ϕ, T0) of the
unsheared system (at granular temperature T0) with the prescribed volume fraction.

damping constant we used the Enskog expression of Garzó and Montanero [13]. It is not a crucial
ingredient but more precise values could easily be incorporated. For more technical details on the
numerical procedure see Appendix E.

VI. RESULTS

To obtain quantitative predictions, we numerically solved Eqs. (63), (64), and (61) (see Sec. V E
and Appendix E). Some of the results are presented in Ref. [25]. Here we will focus on a broader
range of parameters and provide additional comparison with established kinetic theories.

A. Rheology and flow curves

1. Protocol H

The phenomenology of Protocol H has been discussed in Ref. [25]. Comparing the dynamic state
diagrams for different inelasticities, ε, in Fig. 1 confirms the broad layout of the rheological regimes.
The critical density for the granular glass transition, ϕc(ε), which increases with increasingly
dissipative particles determines the boundaries of the Newtonian regime observed at low densities
and small shear rates. At the highest shear rates, the power balance, Eq. (4), is dominated by shear
heating and shear thickening is observed in the Bagnold regime. As the granular fluid is more
susceptible to shear heating the more elastic the particles are, the onset of the Bagnold regime
moves to lower shear rates for larger values of ε.
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FIG. 3. Protocol T (T ≡ T0) or Protocol H (T > T0): Dynamic state diagrams in the plane spanned by
Péclet number, Pe, and packing fraction, ϕ, for several values of the coefficient of restitution, ε, as indicated.
The effective exponent R quantifying the shear rate dependence of the viscosity, η(Pe) ∼ PeR, is color coded
on the same scale as in Fig. 1. The inaccessible regime Pe > Pe∞ is left blank. The jagged boundary is due to
discretization.

Flow curves, σ (γ̇ ), corresponding to Protocol H are shown in Fig. 2 (see also Figs. 2 and 3 in
Ref. [25]). Note that the precise value of the coefficient of restitution may have a comparatively
large influence on the flow behavior. For the same flow conditions, i.e., packing fraction, ϕ, and
shear rate, γ̇ , rather elastic particles may place the granular fluid in the flat part of the flow curve,
requiring rather large stresses, σ/nT0 ∼ 10, while for more inelastic particles the flow would still be
in the Newtonian regime, requiring only negligible shear stress, σ/nT0 � 1. This is also reflected in
the viscosity (Fig. 2) which may vary over many orders of magnitude for a fixed packing fraction,
ϕ, depending on both shear rate and coefficient of restitution. A natural scale to compare viscosities
to is the Boltzmann viscosity,

η0 := η(ϕ → 0, ε = 1) = 5

16d2

√
T/π, (66)

of an elastic hard sphere gas at vanishing density [42]. Figure 2 shows that viscosities far exceeding
this value are predicted at the considered densities. Considering the stationary granular temperature
T , resulting from the power balance, Eq. (4), we observe that, as expected, significant shear rates
are needed to make shear heating relevant and increase the stationary granular temperature, T ,
with respect to the granular temperature T0 of the unsheared fluid (Fig. 2). In Ref. [25] we defined
the critical Péclet number, Pe∗, for the onset of shear thickening, as the point where T = 2T0.
Comparing the temperature curves in Fig. 2 with the viscosity curves, η(γ̇ ), confirms the utility
of this definition.

If we normalize the shear stress, σ/nT , with the stationary granular temperature, T , instead of
the initial granular temperature, T0, and express the shear rate, γ̇ , in terms of the Péclet number,
Pe, we arrive at a description of the rheology in terms of intrinsic quantities that make the
temperature independence of the (inelastic) hard sphere fluid manifest (Figs. 3 and 4). In this form,
the predictions for Protocol H are identical to the ones for Protocol T as they only differ in the
temperature control (cf. Sec. II A).
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FIG. 4. Protocol T (T ≡ T0) or Protocol H (T > T0): Flow curves, shear stress σ as a function of Péclet
number Pe (first row), and viscosity η relative to the Boltzmann viscosity η ≡ η0(T ), Eq. (66), (second row)
for several values of the coefficient of restitution ε (columns, as indicated) and several packing fractions (color
coded) from ϕ = 0.48 (yellow, bottom) to ϕ = 0.60 (black, top). The filled circles mark the maximum Péclet
number Pe∞, i.e., the end of the flow curves for the respective densities.

2. Protocol T

Employing Protocol T makes it straightforward to obtain the intrinsic quantities, σ/nT , and
Pe = γ̇ /ωc(ϕ, T ), as the granular temperature is held constant, T ≡ T0, throughout. In terms of the
packing fraction, ϕ, and the Péclet number, Pe, the dynamic state diagram is shown in Fig. 3 for
different inelasticities ε. We readily observe that the shear thickening regime vanishes altogether
compared to the diagrams for Protocol H (Fig. 1). The apparent shear thickening observed in
Protocol H is due to shear heating only, which is absent in Protocol T. As the Péclet number is
restricted to be smaller than the maximal value, Pe � Pe∞ [25], the dynamic state diagram includes
unreachable regions of large Péclet number, Pe > Pe∞(ϕ, ε) that cannot be realized in a granular
fluid. The Bagnold regime of Protocol H (cf. Fig. 1) shrinks to the line Pe = Pe∞(ϕ, ε) for Protocol
T. At low Péclet number or shear rate, where shear heating is negligible, the dynamic state diagrams
become indistinguishable between Protocols H and T (cf. Figs. 1 and 3). Shear-thinning behavior,
which is caused by the slow relaxation in the fluid [25,27], is independent of temperature control
and is therefore also observed in Protocol T.

The flow curves, σ (Pe), for Protocol T shown in Fig. 4 (see also Fig. 2 in Ref. [25]) also reflect
the finite admissible range of Péclet numbers as they end at Pe = Pe∞. The viscosity curves (Fig. 4)
confirm that no shear thickening is observed in Protocol T and the Newtonian regime at low densities
and small shear rates is complemented by a shear-thinning regime only. For packing fractions, ϕ >

ϕc(ε), above the glass transition, the variation of the shear stress, σ , with Péclet number, Pe, is
remarkably small throughout the whole range of admissible Péclet numbers (Fig. 5). Once the yield
stress, σy = σ (Pe → 0), is exceeded, no more than roughly a doubling of the shear stress will be
needed to achieve arbitrary shear rates.

B. Transport coefficients and yield stress

Irrespective of the possibility to handle arbitrary shear rates, GITT (and more generally ITT) can
also be used to calculate the viscosity, η, in the linear response regime, γ̇ → 0. Recall that in this
limit Protocol T and H become indistinguishable as there is no shear heating. Employed in this way,
GITT extends the low-density Enskog predictions [13], to higher densities (Fig. 6). In particular
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FIG. 5. Protocol T (T ≡ T0) or Protocol H (T > T0): Flow curves, σ (Pe), for several values of the
coefficient of restitution ε (as indicated) and several packing fractions (color coded) from ϕ = 0.54 (yellow,
bottom) to ϕ = 0.60 (black, top) close to and above the glass transition density. Note the linear scale for the
shear stress.

it captures the strong increase and eventual divergence of the viscosity, η(ϕ) ∝ [ϕc(ε) − ϕ]−γ (ε)

with γ (ε) ∼ 2.4 as the glass transition is approached [25,41]. This divergence can, of course, not
be recovered by the low-density, Enskog predictions. The variations in the glass transition, ϕc(ε),
with the coefficient of restitution, ε, leads to a correspondingly large variation of the viscosity, η(ε),
which far exceeds the variations predicted by Enskog theory.

The large shear rate behavior, γ̇ → ∞, or Pe → Pe∞, respectively, is characterized by the
Bagnold coefficient B := σ/γ̇ 2 [Fig. 7(a)]. As shear heating is more effective for more elastic
particles (in Protocol H), the Bagnold coefficient increases with ε. As the glass is already shear-
molten in the Bagnold regime, unlike the viscosity η, the Bagnold coefficient does not diverge at the
glass transition density, ϕc(ε). However, the increasing sluggishness of the fluid at high densities is
also reflected in the Bagnold coefficient which increases rapidly with density. Such a quick rise is
naturally not recovered by the existing Enskog predictions. The theories by Mitarai and Nakanishi
[80], and Kumaran [81] both come close to the results from GITT for lower densities but deviate
by orders of magnitude close to the glass transition density. The simple prediction by Savage and
Jeffrey [82], BSJd = 32ϕχ (ϕ)/35π , where χ (ϕ) is the value of the pair correlation function at
contact is independent of the coefficient of restitution but also yields the right order of magnitude at
low densities.

While the Bagnold coefficient of Savage and Jeffrey [82] is expressed in terms of the pair
correlation function at contact of elastic hard spheres, namely, the Carnahan-Starling approximation

FIG. 6. Viscosity η, normalized by the Boltzmann viscosity η0, Eq. (66), at small shear rate, γ̇ → 0. (a) As
a function of the coefficient of restitution ε for a number of packing fractions from ϕ = 0.47 (yellow, bottom)
to ϕ = 0.51 (black, top). (b) As a function of packing fraction, ϕ, for a number of values of the coefficient of
restitution, ε, from ε = 0.1 (cyan, bottom) to ε = 0.9 (magenta, top). Solid lines denote GITT predictions while
dashed lines indicate the Enskog low-density expansion by Garzó and Montanero [13]. The arrows indicate the
glass transition density, ϕc(ε).
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(a) (b)

FIG. 7. (a) Bagnold coefficient B as a function of packing fraction ϕ. Solid lines are GITT predictions
for a number of values of the coefficient of restitution, ε, from ε = 0.1 (cyan, bottom) to ε = 0.9 (magenta,
top). The dashed lines denote Enskog predictions from Savage and Jeffrey [82] (blue), Kumaran [81] (orange),
and Mitarai and Nakanishi [80] (green). The last two are for ε = 0.9. The arrows indicate the glass transition
density, ϕc(ε). The dot-dashed lines are the predictions by Jenkins et al. [84,85] BJ1 (red) and BJ2 (violet) for
ε = 0.6 (cf. Appendix F). (b) Yield stress, σy, as a function of volume fraction, ϕ, for a number of values of
the coefficient of restitution, ε, from ε = 0.9 (magenta, left) to ε = 0.1 (cyan, right). Points are calculated and
lines are a guide to the eye. The dotted horizontal line indicates the critical yield stress σ c

y at the granular glass
transition.

[83] that is very good up to ϕ ≈ 0.4, Jenkins [84] later used an empirical, high-density pair-
correlation function that diverges at ϕrcp ≈ 0.64 to predict a Bagnold coefficient BJ1, Eq. (F5), that
is formally close to Savage and Jeffrey’s expression, but depends on the coefficient of restitution
ε and diverges at ϕrcp. Note that, as discussed in Ref. [25], we underestimate the granular glass
transition by roughly 5.5%, corresponding to �ϕ ∼ 0.055 for ε = 0.6. To compare Jenkins’ results
to ours, we consequently display his result for BJ1(ϕ − 0.055) in Fig. 7 at a shifted density, so
that it now diverges at ϕ = 0.585. In a later paper, Jenkins and Berzi [85] put forward the idea
of a lower shear jamming density at ϕ ≈ 0.6 for ε ≈ 0.7, implying a divergence of the Bagnold
coefficient BJ2 at ϕ ≈ 0.6, Eq. (F9). Again shifting density for comparison with our results, we
show BJ2(ε = 0.6, ϕ − 0.055) in Fig. 7(a).

In contrast, the granular mode-coupling theory here applies to a driven granular fluid and predicts
a granular glass transition and the emergence of a yield stress at a critical density ϕc(ε) < ϕrcp. The
discussion of the relevant timescales [25] and the dynamic state diagrams (cf. Fig. 1) shows that the
shear rate in the Bagnold regime, γ̇∞, exceeds the structural relaxation rate, τ−1

α . Therefore, the slow
relaxation, τα → ∞ indicating the granular glass transition, is irrelevant for the Bagnold regime and
the Bagnold coefficient must be smooth across the granular glass transition. This is, indeed, the case
for the Bagnold coefficient B calculated by the GITT formalism [Fig. 7(a)].

Above the glass transition density, ϕc(ε), a finite (dynamic) yield stress, σy, has to be exceeded to
keep the system flowing and to prevent it from freezing into an amorphous glass. The critical yield
stress, σ c

y (ε) (cf. Fig. 3 in Ref. [25]) right at the glass transition is on the order of 6–9nT . For larger
densities, ϕ > ϕc(ε), the yield stress quickly rises with density [Fig. 7(b)] as expected [86].

VII. CONCLUSION

In summary, we have shown how to derive generalized Green-Kubo relations, Eq. (30), for
sheared frictionless inelastic hard sphere fluids at finite shear rates and densities around the
(granular) glass transition density. In particular, we have shown that an ITT formalism can be derived
for a granular fluid which is generically out of equilibrium, even in the absence of shear. Here we
focused on the generalized Green-Kubo relation for the shear stress σ , Eq. (33), that we found to
be formally identical to the one for thermalized colloidal suspensions, Eq. (37) in Ref. [31], but for
the prefactor (1 + ε)/2. The starting point was the exact relation (8), expressing the phase space
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distribution of the sheared stationary state, �ss, in terms of the distribution of the quiescent but
out-of-equilibrium reference state, �ref . The essential approximations were (1) the assumption that
the microscopic shear stress captures the change of �ref due to shear, Eq. (9) and (2) to replace
the decay of stress correlations under the Green-Kubo integral by the slow relaxation of density
fluctuations encoded in the transient correlator �q(t ), Eq. (12). The coupling constants, Eq. (32),
capture the essential shear induced anisotropy making it sufficient to consider an isotropic transient
correlator �q(t ), Eq. (61). The derivation showed that the generalized Green-Kubo relation (12) is
neither restricted to small shear rates, γ̇ → 0, nor to quasielastic particles, ε → 1. To ensure a clear
separation of timescales between the slow relaxation of density fluctuations and all other relaxation
modes in the fluid, the density needs to be not too far below the granular glass transition density
ϕc(ε) [27]. On the upper end, it should be sufficiently far away from the random close packing
density, ϕrcp ≈ 0.64, as we do not take the jamming transition into account. Conveniently, details of
the driving mechanism no longer feature explicitly in the generalized Green-Kubo relation (12).

For a homogeneously cooling granular gas, a Green-Kubo relation akin to Eq. (10) has been
developed by Goldhirsch and van Noije [61] following Ronis’ [59] perturbative approach but they
have kept the stress autocorrelation function as an irreducible function. Kumaran [65] has derived a
Green-Kubo relation similar to our result, Eq. (12), for a dilute quasielastic sheared granular gas in
the Bagnold regime. His result is perturbative in the small parameter

√
1 − ε. While it incorporates

wave vector advection and employs a factorization of the time evolution operator similar to our
mode-coupling approximation, it uses the linearized granular hydrodynamic equations valid at low
density and small wave number, kd � 1.

To capture the slow glassy relaxation in the quiescent fluid that is a result of strongly correlated
dynamics and sensitive to local particle configurations, kd � 1 [41,63], we had to go beyond lin-
earized hydrodynamic equations. Instead, we derived a set of nonlinear, generalized hydrodynamic
equations for the transient correlator, Eqs. (51) and (57), explicitly taking into account the shear
advection of wave vectors and the loss of detailed balance due to the inelastic collisions. The latter
is manifest in the modified speed of sound, Eq. (49), and the two unequal coupling constants in the
memory kernel, Vλ

qkp,Wλ
qkp, Eqs. (59); see also Refs. [27,41]. To this end, we kept the exact inelastic

binary collision operator, Eq. (16), but approximated the nonequilibrium phase space distribution
�ref of the reference fluid as essentially the canonical distribution of an elastic hard sphere fluid
(cf. Sec. II A). Let us once more stress that here the essential approximation is the factorization
between spatial and velocity degrees of freedom. A quantitative understanding of these correlations
is currently lacking and numerical results are limited to the low-density, two-dimensional data of
Pagonabarraga et al. [49]. A fully quantitative treatment of the coupling between relative positions
and velocities is therefore currently out of reach. However, in order to assess the validity of our
approximations, let us sketch the qualitative influence of these correlations on the GITT formalism.
As the correlations are short ranged [49], we expect them to primarily affect the collision integrals
used to calculate the vertices. In effect, the mean collisional force is reduced through the depletion
of head-on collisions. This has two counteracting effects: (1) it reduces the shear stress at a given
density, but (2) it shifts the granular glass transition to higher densities. In conclusion, we expect the
shear stress at a given distance from the granular glass transition to be only weakly dependent on
the coupling between positions and velocities. Non-Gaussian corrections to the velocity distribution
as well as structure factors that characterize the actual granular fluid could be incorporated in
extensions of our work.

A notable feature of the GITT approach presented here is that it associates the emergence
of a yield stress with the dynamic granular glass transition. The corresponding glass transition
densities, 0.52 � ϕ̂c(ε) � 0.6 [25,27], are lower than the eventual jamming density at ϕrcp ≈ 0.64.
In essence, we predict the emergence of a yield stress (characterizing a quiescent amorphous solid)
without lasting contacts between the particles. Shear thinning is then associated with the shear rate
γ̇ exceeding the structural relaxation rate of the granular fluid [25]. The latter is a hallmark of
glassy behavior but is at variance with alternative approaches to granular rheology that attribute
the yielding transition at densities below ϕrcp with the shear-induced emergence of lasting contacts

024305-21



W. TILL KRANZ et al.

[19,20,51,66,85], i.e., a divergence of the pair correlation function at contact, χ . Resolving which of
the mechanisms controls the physics, requires, we believe, additional experiments and simulations.

The increase of the shear stress at high densities is driven by the slow structural relaxation of
the system around the glass transition. The dependence of the glass transition on the coefficient of
restitution yields a strong sensitivity of the transport coefficients and even the qualitative rheological
behavior on the inelasticity of the particles. This sensitivity, together with the strong increase (and
eventual divergence) of the small shear viscosity, η(γ̇ → 0), shows that an extrapolation of the
Enskog predictions from the gaseous state of vanishing density, ϕ � 1, to significant densities,
ϕ ∼ O(1), cannot work as it completely neglects the dramatic slowing of structural relaxation at
high densities. For the Bagnold coefficient, B, we have argued that it is defined only for finite shear
rates, γ̇∞ = ωc Pe∞. Except for the elastic limit, ε → 1, where Pe∞ � 1, this makes the Bagnold
coefficient inaccessible to linear response theories but places it well within the reach of GITT.

The hard sphere property that the temperature, T , only enters as a timescale via the collision
frequency, ωc ∼ √

T , and does not control the physics, is retained by GITT. In terms of the
Péclet number, Pe, and the dimensionless shear stress σ/nT , the theory is manifestly temperature
independent. The choice of temperature control in an experiment, however, has a profound influence
on the phenomenology observed. If shear heating is not compensated (Protocol H), the work
expended on heating the system will manifest as an apparent shear thickening (Fig. 1). However, the
viscosity η ∼ √

T trivially rises with temperature and if we take this into account (Fig. 3), no shear
thickening remains. Dialing down the random driving force we can keep the temperature constant
(Protocol T), However, this works only below a maximal shear rate, γ̇ � ωc Pe∞. For higher shear
rates even switching off the random driving completely cannot compensate shear heating.

We have focused here on the derivation of GITT and only discussed the most fundamental
predictions of the theory. The experience from the rheology of colloidal suspensions shows that
the ITT formalism can contribute to the description of a much broader range of phenomena. We
are planning to explore these in future work. Straightforward extensions include a more realistic,
velocity-dependent coefficient of restitution [87]. We do not expect such a refined model to quali-
tatively change our results. On the other hand, the rheology of granular fluids is strongly effected
[88–90] by frictional interactions of the grains, which could be taken into account by tangential
restitution and Coulomb friction as in Refs. [91,92]. Another extension are larger size disparities,
which may entail new phenomena [93] and are left for subsequent studies. Our formalism could also
be extended to treat nonspherical particles [37], albeit at the expense of a further increase in technical
complexity. A necessary first step would be to promote the understanding of the orientational
[94–97] glass transition to the granular realm. Tackling this formidable task is far beyond the scope
of the present study and shall be left to future work. In the present work, we have neglected drag
forces and hydrodynamic interactions induced by a possible interstitial fluid and effectively consider
particles in vacuum, leaving a discussion of two-phase flow effects to future work.
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APPENDIX A: THE SLLOD EQUATIONS OF MOTION

The Sllod equations form the basis of the work presented here. As they posses some nonintuitive
features and have been a matter of debate in the literature [36,98–100], we will sketch their
derivation. To make contact with the literature, let’s assume for the moment that particles interact
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via smooth pair potentials V (ri j ). Then the Hamiltonian of the system is generically given as
H (r1, . . . , rN , v1, . . . , vN ) = ∑

i v
2
i /2 + ∑

i< j V (ri j ).
To single out the imposed flow profile u(r) = r · k, we make the noncanonical transformation

vi → ci = vi − ri · k. In the new coordinates the Hamiltonian

Hnc(r1, . . . , rN , c1, . . . , cN ) =
∑

i

(
1

2
c2

i + rici : k
)

+ Ṽ (r1, . . . , rN ) (A1)

assumes the form of a Dolls Hamiltonian, albeit with a a modified effective potential
Ṽ (r1, . . . , rN ) := ∑

i< j V (ri j ) + 1
2

∑
i(ri · k)2 [98]. The canonical Hamilton equations no longer

hold for the noncanonical Hamiltonian, Eq. (A1), expressed in noncanonical coordinates. Instead,
the same transformation has to be applied to the canonical Poisson brackets, {·, ·} → {·, ·}nc

[Eq. (22) in Ref. [98]]. The resulting equations of motion are the Sllod equations

ṙi = {ri, Hnc}nc = ci + ri · k, (A2)

ċi = {ci, Hnc}nc = F i − ci · k − ri · k · k, (A3)

where F i := −∑
j �=i ∇V (ri j ) is the total force on particle i.

Note that the net forces are not independent of the flow profile. Indeed, one can show that the
time averaged force F(r) := ∑

i∈O F i acting on a fluid element O at position r is fully determined by
the velocity gradient tensor, F(r) = r · k · k [99]. Therefore any fluctuations δu(r) := u(r) − r · k =∑

i∈O ci follow the simple equation of motion

δu̇(r, t ) = −δu(r, t ) · k + δF(r, t ), (A4)

where δF(r, t ) = F(r, t ) − F(r) is the fluctuating force. The first term on the right-hand side of
Eq. (A4) is problematic. Depending on the velocity gradient tensor k it may lead to unbounded
growth of a spontaneous fluctuation δu(r, 0). In simulations this is avoided by taking the whole
simulation volume as the fluid element O and using deterministic boundary forces (e.g., Lees-
Edwards boundary conditions) with vanishing fluctuations δF = 0. Together with a perfect initial
flow field, δu(r, t = 0) = 0, this keeps the fluctuations in the flow field at exactly zero for all times
as the total momentum of the system ∑

i

ci(0) = 0 (A5)

is conserved.
For interacting particles, one expects viscous heating, i.e., the transfer of energy from the flow

field r · k to the internal energy Eint := ∑
i c2

i /2 + ∑
i< j V (ri j ) �= Hnc. Indeed, one finds

dEint

dt
= −σ : k − Ẇexp, (A6)

where Wexp = ∑
i rici : k · k is the work performed by the fluid due to an expansive flow field [99].

As it is usually desired to keep the temperature—related to the internal energy—of the fluid constant,
a thermostat has to be employed [36]. In the present work we are solely concerned with linear shear
flows where ∇u · ∇u ≡ 0. simplifying both Eqs. (A3) and (A6).

APPENDIX B: THE DENSITY-STRESS OVERLAP FOR HARD SPHERES

To make contact with established results, it is instructive to recall the origin of the momentum
current tensor P in the continuity equation for momentum

∂t j(r, t ) ≡ iL+
ref j(r, t ) = −∇ · P(r, t ). (B1)
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In reciprocal space we therefore have [101]

−iq · P(q) = iq · q̂q̂
iq

iL0 jL
q + iq ·

∑
j<k

r̂ jk

iq · r̂ jk
iT +

jk jq, (B2)

where jL
q = q̂ · jq is the longitudinal current. In the absence of macroscopic flows (u ≡ 0) such

that σαβ ≡ −Pαβ and in the homogeneous limit q → 0 this indeed recovers the Irving-Kirkwood
expressions σ kin

αβ (q → 0) = ∑
j v

α
j v

β
j , and

σ int
αβ (q → 0) = −1 + ε

2

∑
j<k

r̂α
jk r̂β

jk

iq · r̂ jk
(r̂ jk · v jk )2θ (−r̂ jk · v jk )δ(r jk − d )(eiq·rk − eiq·r j ) (B3)

= 1 + ε

2

∑
j<k

iq · r jk

iq · r̂ jk
r̂α

jk r̂β

jk (r̂ jk · v jk )2θ (−r̂ jk · v jk )δ(r jk − d ) (B4)

= 1 + ε

2
d

∑
j<k

r̂α
jk r̂β

jk (r̂ jk · v jk )2θ (−r̂ jk · v jk )δ(r jk − d ), (B5)

independent of q̂ [57,58]. The vertex A := −〈ρkρ−k|QP(q = 0)〉 = k̂k̂A‖ + (1 − k̂k̂)A⊥ may be
split into a longitudinal and a transverse part,

A‖ = k̂k̂ : A, and A⊥ = k̂
⊥

k̂
⊥

: A, (B6)

where k̂
⊥ ⊥ k̂. Then the off-diagonal component is given by Axy = k̂xk̂y(A‖ − A⊥).

In order to calculate the expectation values A‖ and A⊥, we start with the stress tensor at finite q
and only perform the limit q → 0 in the end. For A‖ momentum conservation enforces q ‖ k such
that

A‖ = − lim
q→0

〈ρkρqk̂−k|Qk̂k̂ : P(qk̂)〉, (B7)

where

−k̂k̂ : P(qk̂) = 1

iq
iL0 jL

qk̂
+

∑
j<k

k̂ · r jk

iqk̂ · r jk

iT +
jk jL

qk̂
= 1

iq
iL+

ref jL
qk̂

, (B8)

i.e.,

A‖ = lim
q→0

1

iq

〈
ρkρqk̂−k

∣∣QiL+
ref jL

qk̂

〉
. (B9)

With the same line of argument we arrive at

A⊥ = − lim
q→0

〈ρkρqk̂
⊥−k

|Qk̂
⊥

k̂
⊥

: P(qk̂
⊥

)〉 = − lim
q→0

1

iq

〈
ρkρqk̂

⊥−k

∣∣QiL+
ref jL

qk̂
⊥
〉
. (B10)

From the literature [41] we know〈
ρkρq−k

∣∣QiL+
ref jL

q

〉 = 1 + ε

2
iT

[
(q̂ · k)S|q−k| + q̂ · (q − k)Sk − qS(3)(k, q − k)/Sq

]
, (B11)

where S(3)(k, p) is the triplet static structure factor [102]. The magnitude of the off-diagonal term
can therefore be calculated as

A‖ − A⊥ = 1 + ε

2
T lim

q→0

[
k

Sk−q − Sk

q
+ Sk − S(3)(k, qk̂ − k)

Sq
− Sk + S(3)(k, qk̂

⊥ − k)

Sq

]

= −1 + ε

2
T kS′

k, (B12)
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employing the geometric relations between q and k and using that S(q → 0) �= 0. The latter is true
for both elastic and dissipative hard sphere fluids in the stationary state but fails in hyperuniform
configurations [103]. For elastic spheres (ε = 1) this constitutes a kinetic derivation of the stress-
density overlap that has previously been derived from thermodynamic arguments [31].

APPENDIX C: THE CASE OF VISCOUS DISSIPATION

Besides modeling granular particles as hard spheres with a coefficient of restitution ε, an often
used and equally valid approach is to model them as soft spheres with a finite ranged, elastic
repulsive force Fel

i (ri j ) [104]. In this case, dissipation is modeled by a viscous force

Fvisc
i = −ζ

∑
j �=i

�(d − ri j )r̂i j (vi j · r̂i j ) (C1)

acting while the particles are in contact and parameterized by the viscosity ζ , a material property of
the particles. Note that Fvisc

i is linear in the relative velocity.
A Liouville operator corresponding to Fvisc

i is easily constructed, iLvisc = ∑
i Fvisc

i · ∂vi . If this
Liouville operator is used in Eqs. (B9) and (B10) above, it can be seen that the viscous contributions
vanish due to parity. With this, and in contrast to our expression (12), the generalized Green-Kubo
relation for soft granular particles with viscous dissipation does not contain any explicit reference
to the dissipative interactions. In fact, it is identical to the relation for purely elastic particles. For
the same reason, also the equation of motion for the transient correlator �k(t ) including its memory
kernel in mode-coupling approximation does not contain any term that stems from the viscous
dissipation. The only change in the constitutive relation between purely elastic soft particles and
dissipative soft particles would then be contained in the change of static structure, Sk , and is expected
to be very weak.

To remedy this unsatisfactory state, Suzuki and Hayakawa [21] amended the mode-coupling
approximation of the stress autocorrelation function, Eq. (10), by a second projection on density-
current pairs ρk j−k. These have a finite overlap with the viscous stress iLvisc jk. However, this
forces the introduction of a second, independent transient correlator, Hk(t ) := iN〈 jk|ρk(t )(t )〉 in
our notation. Even in the isotropic approximation, Hk(t ) cannot be reduced to the transient
density correlator due to the broken time-reversal symmetry. The second correlator, coming with
its own equation of motion coupled to the equation of motion of �k(t ), substantially increases
the complexity of the problem. Although Suzuki and Hayakawa [21] have shown that it is still
manageable, it is not completely clear that to single out density-current pairs is physically consistent.
Density-density pairs are unique in that the (transient) correlator is expected to become exceedingly
slow compared to microscopic timescales close to the glass transition. Currents, however, do not
freeze at the glass transition and current correlations are expected to decay rapidly. At this point, it
is not obvious if there are other decay channels in addition to Hk(t ) that would be equally important
and would have to be included.

APPENDIX D: THE DIRECTIONAL AVERAGE OF EQ. (52)

The following derivation is standard in the ITT literature [31,32,35], but we include it here
for the sake of completeness. The vector valued density-current correlator Hq(t ) = q̂(t )H‖

q (t ) +
q̂⊥(t )H⊥

q (t ) has a longitudinal and a transverse component. Here q̂⊥(t ) ⊥ q̂(t ) is an a priori arbitrary
unit vector perpendicular to q̂(t ). From Eq. (62) we have H‖

q (t ) = Sq�̇q(t )/q(t ); furthermore Lq = 0
in mode-coupling approximation, so that substitution of Eq. (51b) into Eq. (52) yields

Sq�̈q(t ) + q2(t )C2
q(t )Sq�q(t ) + q(t )νq(t )H

‖
q (t ) + q(t ) ·

∫ t

0
dτHq(τ ) · Mq(t, τ )

+ 2q(t ) · k · Hq(t ) = 0. (D1)
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Once we also split the memory kernel into longitudinal and transverse components

Mq(t, τ ) = q̂(t )q̂(t )m‖
q(t, τ ) + [1 − q̂(t )q̂(t )]m⊥

q (t, τ ), (D2)

we have

q(t ) · [Hq(τ ) · Mq(t, τ )] = q(t )H‖
q (τ )m‖

q(t, τ ). (D3)

We immediately have

q(t ) · k · q̂(t ) = γ̇ qx(t )qy(t )/q(t ) (D4)

and choose q⊥(t ) = q(t ) × [q(t ) · k] perpendicular to q(t ) and q(t ) · k. Then

q(t ) · k · q̂⊥(t ) = 0 (D5)

and using Eqs. (D3), (D4), and (D5), Eq. (D1) turns into

�̈q(t ) + νq(t )�̇q(t ) + q2(t )C2
q(t )�q(t ) +

∫ t

0
dτm‖

q(t, τ )�̇q(τ ) + 2γ̇
qx(t )qy(t )

q2(t )
�̇q(t ) = 0, (D6)

independent of H⊥
q (t ). Averaging Eq. (D6) over the directions of q̂(t ), the last term vanishes and we

arrive at Eq. (63). Here we identify mq(t, τ ) ≡ m‖
q(t, τ )/q2(t )C2

q(t ).
By the same line of arguments, we arrive at the equation of motion for the transverse density-

current correlator

d

dt
H⊥

q (t ) + [
μq(t ) − νq(t )

]
H⊥

q (t ) +
∫ t

0
dτm⊥

q (t, τ )H⊥
q (τ ) = 0. (D7)

Note that it is implicitly coupled to �q(t ) through the memory kernel.

APPENDIX E: NUMERICS

In order to solve Eqs. (61), (63), and (64) numerically, we adapted an established code [30]. The
temperature independence of the hard sphere equations is exploited and the explicit dependence on
the coefficient of restitution has been added. For the structure factor, we use the Percus-Yevick [79]
explicit solution for hard spheres [105] and for the value of the pair correlation function at contact,
χ , we use the Woodcock equation of state WC1 [106]. The collision frequency is then given as the
elastic Enskog expression, ωc(ϕ, T ) � 24ϕχd−1√T/π [83]. For simplicity, instead of calculating
σ directly, we determine the temperature-independent quantity

η̌(Pe, ϕ, ε) := 1 + ε

2

∫ ∞

0

dt∗√
1 + (Pe t∗)2/3

∫ ∞

0

dk∗k∗4

60π2
×

S′
k

∗
(−t∗ )

S′
k∗

S2
k∗

�2
k(−t∗ )

(t∗). (E1)

From this result, the quantities of interest can be obtained as

σ

nT
= π

6
η̌

Pe

ϕ
,

η

η0(T )
= 2π

15ϕχ
η̌, Bd = π

576
× η̌

(ϕχ )2 Pe
. (E2)

As η0 ∝ √
T , we can derive η/η0(T0) = √

T/T0 × η/η0(T ) and in the same manner γ̇ /ωc(T0) =
Pe

√
T/T0.

The Enskog term, νq Eq. (54), is known to drastically underestimate sound damping at high
densities. To this end we replace it,

νq → 20

3
× DS

d2
[1 + 3 j′′0 (qd )], (E3)

where we chose the Enskog expression for the sound damping constant DS [13] and note that this
expression has the correct hydrodynamic limit, 2DSq2 for q → 0.
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For the wave number integrals, the wave numbers are discretized uniformly at 100 points between
k∗ = 0.4 and k∗ = 40. The initial time step is �τ = 10−5 and the step size is doubled every 100
time steps to bridge the timescales.

APPENDIX F: JENKINS’ CONSTITUTIVE EQUATIONS

Jenkins [84] has developed a semiempirical constitutive equation for dense granular shear flow
in the Bagnold regime and applicable for densities 0.49 � ϕ � 0.6. In our notation it consists of an
expression for the dimensionless shear stress

σ̂J1 := 8J

5
√

π

(
30

J
× 1 − ε2

c1

)1/3

G5/6
1 (F1)

together with a dimensionless cooling rate 
J1 := 1−ε2

L1/d , modified from the Enskog approximation
by an effective dimensionless length scale

L1/d := 1

2

[
30

J
(1 − ε2)c1G1

]1/3

. (F2)

Here J := 1 + π/12, G1 ≡ ϕχJ1 := 0.85ϕ/(0.64 − ϕ) is essentially an empirical pair correlation
function made to diverge at a presumed jamming density of 0.64, and c1 ≈ 0.75 is a fit parameter.

Using Eq. (E2), we can relate the Bagnold coefficient

BJ1d = ϕσ̂J1

96G2
1

(
PeJ1

∞
)2 (F3)

to the dimensionless shear stress σ̂J1. Here the Péclet number is determined consistently by Eq. (7),
PeJ1

∞ = 
J1/σ̂J1, such that

BJ1d = ϕσ̂ 3
J1

96G2
1


2
J1

= 120 × 302/3J4/3

375π3/2c1/3
(1 − ε2)−1/3ϕG7/6

1 (F4)

≈ 0.833(1 − ε2)−1/3ϕ[ϕχJ1(ϕ)]7/6. (F5)

Later Jenkins and Berzi [85] published a refined version of this model where now

σ̂J2 := 4(1 + ε)

5
√

π

(
30

c2
× 1 − ε2

1 + ε

)1/3

G8/9
2 , (F6)

and we have made the approximation J (ε) � (1 + ε)/2. Here G2 ≡ ϕχJ2(ϕ) := 0.63ϕ/(0.6 − ϕ)
is another empirical pair correlation function and c2 ≈ 0.5 is a fit parameter. For the effective length
scale they now propose

L2/d :=
(

30
1 − ε2

1 + ε
c2

2

)1/3

G2/9
2 . (F7)

Effectively we obtain

BJ2d = ϕσ̂ 3
J2

96G2
2


2
J2

= 4 × 302/3c1/3
2

25π3/2
× (1 + ε)4/3

(1 − ε2)1/3
ϕG10/9

2 (F8)

≈ 0.555

(
1 + ε

2

)4/3

(1 − ε2)−1/3ϕ[ϕχJ2(ϕ)]10/9, (F9)

where the main difference to Eq. (F5) is the different pair correlation function χJ2 and the more
complicated dependence on the coefficient of restitution ε.
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