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(Received 10 February 2010; published 1 June 2010)

We investigate the dynamics of a driven system of dissipative hard spheres within mode-coupling

theory. The dissipation is modeled by normal restitution, and driving is applied to individual particles in

the bulk. In such a system, a glass transition is predicted for a finite transition density. With increasing

dissipation, the transition shifts to higher densities. Despite the strong driving at high dissipation, the

transition persists up to the limit of totally inelastic normal restitution.
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The jamming diagram of Liu and Nagel [1] conjectures
for the space spanned by the parameters packing fraction
’, temperature T, and external stress �, that there is a
region where the material is solidlike (or jammed), cf.
Fig. 1. This perspective unifies the concepts of jamming
for macroscopic, athermal particles and of the glass tran-
sition for microscopic, thermal particles. A lot of work has
been devoted to point J—the arrest of quasistatic granular
assemblies [2]. Similarly, the glass transition of a super-
cooled molecular liquid has been studied extensively, cor-
responding to a transition line in the ’-T plane, which in
the case of hard spheres is parallel to the T axis. In such a
system of elastic hard spheres, the glass transition is de-
scribed well by mode-coupling theory (MCT) [3,4].
Whether a unified picture of the jamming diagram holds,
however, is still a matter of debate.

It was shown by theory and computer simulation that
both Newtonian and Brownian equations of motion yield
the same glassy dynamics [5–7]. The situation is different
when the system is subject to shear. A recent extension of
MCT for this case shows for colloidal suspensions that any
finite shear rate is able to destroy the glass transition [8].
While remnants of the glass transition still affect the dy-
namics, full arrest is no longer possible. Another scenario
is proposed by the mentioned jamming diagram where
applied shear stress unjams the system but can be compen-
sated for with a higher density or lower temperature, cf.
Fig. 1(a).

It is the objective of the present Letter to investigate the
possibility of a glass transition in a granular fluid at steady
state when dissipation is balanced by bulk driving.
Experiments by Abate and Durian [9] and Reis et al. [10]
showed indications of a granular glass transition in such
fluidized granular systems in two dimensions. These ob-
servations would fit into a modified jamming diagram,
where the axis shear-stress � is replaced by the driving
force vdr used to compensate for the dissipation among the
granular particles. In the following, we shall investigate if a
granular glass transition can exist at a finite kinetic tem-

perature and how such a transition can be described by an
appropriate theory. It will be demonstrated that (1) the
combination of MCT [6] with granular kinetic theory
[11] predicts a glass transition for a driven dissipative
system, (2) the nature of the transition depends on the
degree of dissipation, and (3) granular dynamics cannot
be scaled onto Brownian or Newtonian dynamics.
We consider the nonequilibrium stationary state of a

driven granular fluid comprised of N frictionless hard
spheres of diameter d and massm in a volume V at number
density n ¼ N=V. Energy dissipation in binary collisions
is modeled by a coefficient of normal restitution ".
Because of the energy loss in the collisions the system
needs to be driven in order to achieve a stationary state. We
use a simple bulk driving mechanism, e.g., as in air fluid-
ized beds [9]. The particles are kicked

v 0
iðtÞ ¼ viðtÞ þ vdr�iðtÞ

with frequency !dr which is taken comparable to the
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FIG. 1 (color online). (a) The jamming diagram for sheared
systems as a function of inverse packing fraction ’�1, tempera-
ture T, and shear stress �. (b) Jamming diagram for driven
inelastic hard spheres where the driving power v2

dr replaces the

shear stress. In this latter case, the temperature dependence is
trivial for T > 0, and the origin of the graph lies at random-close
packing.
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collision frequency to keep the energy constant. The driv-
ing amplitude, vdr, is fixed and the direction of the kick,
�iðtÞ, is chosen randomly from a Gaussian distribution,
Pð�Þ, with unit variance. To ensure momentum conserva-
tion, we choose pairs of neighboring particles and kick
them in opposite directions [12]. A stationary state is
reached, when the energy loss due to collisions is balanced
by the energy input due to driving. Hence it is the driving
power, Pdr ¼ mv2

dr!dr=2, which determines the kinetic

granular temperature, T ¼ mhv2i=3, according to

ð1� �2Þ!collT ¼ 8Pdr: (1)

Here !coll /
ffiffiffiffi

T
p

is the elastic collision frequency. In the
following, the theory is formulated for arbitrary dimen-
sions, and numerical results are presented for three
dimensions.

The time evolution of the system consists of ballistic
motion in between binary collisions and random kicks.
These can be formally incorporated in a pseudo-Liouville
operatorLþ [11,13], which generates the time evolution of
an observable, such as the density

�qðtÞ ¼ 1

N

X

i

exp½iq � riðtÞ� ¼ expðitLþÞ�qð0Þ:

For the discussion of the long-time dynamics, the central
quantity of interest is the density correlation function,

Fðq; tÞ ¼
Z

d3�Pð�Þ
Z

d�wð�Þ��
qð0Þ�qðtÞ

¼: h�qð0Þj�qðtÞi;
which is directly accessible from computer simulations and
experiments. Here, wð�Þ is the stationary N-particle distri-
bution and � ¼ fri;vigNi¼1 denotes a point in phase space.

Following Mori and Zwanzig, the normalized correla-
tion function, �qðtÞ ¼ Fðq; tÞ=SðqÞ ¼ Fðq; tÞ=Fðq; 0Þ, can
be represented in terms of restoring forces (�q, �q) and a

memory kernel (Mq) [14],

ð@2t þ �q@t þ�2
qÞ�qðtÞ ¼ �

Z t

0
d�Mqðt� �Þ@��qð�Þ:

(2)

The representation in Eq. (2) is exact. It correctly accounts
for the conservation laws for the density, �qðtÞ, and the

longitudinal momentum, qjLq ðtÞ ¼ @t�qðtÞ. Energy is not

conserved in a granular medium and transverse momentum
is decoupled. Hence, the representation guarantees the
correct hydrodynamic limit of �qðtÞ. The restoring forces

are given by the hydrodynamic fields

�q ¼ N

v2
0

hjLq jLþjLq i; �2
q ¼ N2

v2
0Sq

h�qjLþjLq ihjLq jLþ�qi:

The thermal velocity v0 ¼
ffiffiffiffiffiffiffiffiffiffi

T=m
p

and initial conditions are
�qð0Þ ¼ 1, @t�qð0Þ ¼ 0.

Detailed balance does not hold and consequently, the
transition rates of forward and backward reactions are not
simply related, h�qjLþjLq i � hjLq jLþ�qi�, as it would be

the case in equilibrium systems. For the same reason, the

memory kernel, MqðtÞ ¼ hRy
q jRqðtÞi, is now given by the

cross correlation of two unequal fluctuating forces, Rq �

Ry
q , driven by the reduced dynamics. Details of the calcu-

lation can be found elsewhere [15].
To proceed, we have to resort to approximations. First,

we need an approximate form of theN-particle distribution
to compute static (equal time) correlations. We assume that
positions and velocities are uncorrelated wð�Þ ¼
wrðfrigÞwvðfvigÞ and that the velocity distribution factor-
izes into a product of one-particle distributions,wvðfvigÞ ¼
Q

iw1ðviÞ. The precise from of w1ðvÞ is not needed, it
only has to satisfy hvi ¼ 0 and hv2i ¼ 3T=m<1.
Furthermore, the system is assumed to be isotropic and
homogeneous except for the excluded volume: wrðfrigÞ ¼
Q

i<j�ðrij � dÞ. We find

�q ¼ �i!E

1þ "

2
½1� j0ðqdÞ þ 2j2ðqdÞ�;

�2
q ¼ q2v2

0

Sq

�

1þ "

2
þ 1� "

2
Sq

�

;

with !E the Enskog frequency for the elastic case and the
spherical Bessel functions ji.
An additional approximation is necessary to compute

the memory kernel. The success of MCT for the descrip-
tion of dense molecular and colloidal fluids motivates its
application also to dissipative granular fluids. First, we
project the fluctuating forces onto products of densities.
Second, the resulting higher order correlations are factor-
ized into pair correlations. Thereby, one generates an ex-
plicit expression for MqðtÞ ¼ mqðtÞ�2

q in terms of �qðtÞ
[15],

mq½��ðtÞ � Aqð"Þ
nSq

q2

Z

d3kVqk�kðtÞ�q-kðtÞ (3)

with Vqk given by

Vqk ¼ SkSq-k½q̂ � kck þ q̂ � ðq-kÞcq-k�2:
The direct correlation function, cq, is related to the static

structure factor via the Ornstein-Zernike equation ncq �
1� S�1

q and Aqð"Þ ¼ ½1þ ð1� "ÞSq=ð1þ "Þ��1 depends

on " explicitly. Inserting the mode-coupling approxima-
tion, Eq. (3), into Eq. (2), we get a self-consistency equa-
tion for �qðtÞ. The only further input that is required is the
static structure factor Sq. For simplicity, we use the elastic

Percus-Yevick expression [14] here. Future work [15] will
study the influence of a structure factor that depends on the
coefficient of restitution ".
A memory function under driving is not necessarily

positive definite and might not even be a real function
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[6,16]. Hence, it is surprising that for a driven granular
fluid the only change compared to the elastic case is the
"-dependent prefactor Aqð"Þ> 0; see Eq. (3). Con-

sequently, the memory kernel itself is positive definite
and all work devoted to the mathematical structure of the
standard mode-coupling equations is readily applicable to
the granular system; e.g., see [6] for a compilation. This
finding is quite remarkable because it implies that a large
number of results derived for equilibrium systems also
holds for a system far from equilibrium. In particular, a
positive definite memory function in Eq. (3) guarantees
non-negative spectra. On the other hand, the well-
established universality of glassy dynamics (i.e., indepen-
dence from the microscopic dynamics) is broken for granu-
lar fluids since the memory kernel depends on " explicitly.

A glass transition is signaled by the appearance of a
time-persistent part of the density correlations fq :¼
limt!1�qðtÞ in Eq. (2). In this limit, Eq. (2) reduces to

the algebraic equation fq=ð1� fqÞ ¼ mq½f� which is

solved readily by standard procedures [17]. For all values
of the coefficient of restitution, 0 � " � 1, an ideal glass
transition of the driven granular fluid is found with a
transition density ’cð"Þ, cf. Fig. 2. For increasing dissipa-
tion, i.e., smaller ", the glass transition is shifted to higher
densities. This can be understood as follows: for increased
dissipation, " < 1, the prefactor Aqð"Þ in Eq. (3) becomes

smaller than unity. Dissipation and driving hence weaken
the memory effects and destabilize the glass. This needs to
be compensated by a higher density. The resulting com-
pensation of enhanced dissipation and driving by increased
density can be represented in a corresponding jamming
diagram as shown in Fig. 1(b), where for simplicity the
mean-field relation v2

dr / ð1� "Þ2=4 was used. It might be

reassuring that, although the critical density increases with
increasing dissipation, it stays below the density of random
close packing.

The full dynamics of Eq. (2) is shown in Fig. 3 for a
density close to the glass-transition density ’c. �qðtÞ
shows the generic two-step relaxation. After an initial

fast relaxation, �qðtÞ approaches a plateau fq in a critical

decay, �qðtÞ � fq / t�a. The variation of the critical ex-

ponent a is shown in the inset of Fig. 2. For values below
the transition, ’<’c, a second power law describes the
decay from the plateau, known as the von Schweidler law,
�qðtÞ � fq / tb. The exponent b (not shown here) also

varies with the coefficient of restitution ", and is uniquely
related to a.
At the transition point and beyond, ’>’c, the corre-

lation function assumes a finite long-time limit fq > 0

which sets in at a critical plateau value fcq. These values

are shown in Fig. 4 for various values of ". The increasing
dissipation has three noticeable effects: (1) correlations at
small wave numbers are enhanced, (2) oscillations reflect-
ing the local structure become less pronounced, and (3) the
localization length (indicated by the inverse of the width of
the fq distribution) decreases. The last finding is a conse-

quence of the glass transition taking place at a higher
density, cf. Fig. 2.
It was shown earlier that Newtonian (N) and Brownian

(B) systems show the same glassy dynamics [7]. This is
shown for the MCT dynamics in Fig. 5 for curves N and B,
where N only needed to be shifted along the time axis to
match B. In contrast, due to the explicit dependence on " in
Eq. (3), for any " < 1, the granular long-time dynamics
(G) cannot be scaled on top of the Newtonian or Brownian
results. In addition, for granular dynamics at different "
there also exists no single master curve, cf. Fig. 3.
Therefore, granular dynamics leads to a fundamentally
different long-time behavior.
In conclusion, we have shown that MCT can be extended

to granular fluids, which are in a steady state far from
equilibrium. It can be shown that the resulting memory
kernel in Eq. (3) is positive definite, and therefore most

0 0.2 0.4 0.6 0.8 1
ε

0.52

0.54

0.56

0.58

ϕc
0 0.5 ε

0.31

0.33
a

FIG. 2 (color online). Transition density ’c as a function of the
coefficient of restitution ". The short horizontal bar indicates the
result for the elastic case for " ¼ 1. The inset shows the
evolution of the critical exponent a with ".
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FIG. 3 (color online). Dynamics of the coherent density cor-
relator �qðtÞ for the wave vector qd ¼ 4:2 at the respective

critical densities ’cð"Þ and at ’ ¼ 0:999’cð"Þ for " ¼ 1:0
(dashed lines, elastic case), 0.5 (full lines), and 0.0 (dotted lines).
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mathematical theorems from equilibrium MCT carry over
to the driven granular case. An ideal glass transition is
observed for all values of the dissipation or equivalently all
values of the driving. Since the balance between dissipa-
tion and driving implies that the driving amplitude is
proportional to the inelasticity v2

dr / ð1� "Þ2, the glass

transition defines a line in the ’�1-vs-v2
dr plane of a

generalized jamming diagram, cf. Fig. 1. The universality
known for Newtonian and Brownian dynamics is broken in
the granular case; however, the predicted differences in the
critical exponents, cf. inset of Fig. 2, and glass form
factors, cf. Fig. 4, are relatively small. Comparably large
changes with increased dissipation are expected in the
transition densities as shown in Fig. 2. This prediction
can be supported by looking at a precursor of the glass-
transition line in computer simulation data: For increasing
dissipation, points of equal diffusivity are found to be
shifted to higher densities (inset of Fig. 5) in accordance
with our predictions for the glass transition in Fig. 2.
Therefore, we expect our results to be testable in further
computer simulation studies and also in experiments.
Without rigorous proof we expect the presented results to
apply also to variations of the driving mechanism. While
shearing might be a different case, cf. [8], thermalizations
similar to the ones described above can be expected to
exhibit similar results.
We thank T. Aspelmeier, A. Fiege, and J. Horbach for

interesting discussions. This work was supported by
DFG Sp714/3-1, BMWi 50WM0741, and DFG FG1394.

[1] A. Liu and S. R. Nagel, Nature (London) 396, 21 (1998).
[2] C. S. O’Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel,

Phys. Rev. E 68, 011306 (2003).
[3] U. Bengtzelius, W. Götze, and A. Sjölander, J. Phys. C 17,
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FIG. 4 (color online). Critical glass form factors fcq for coef-
ficient of restitution " ¼ 1:0 (empty squares, elastic case), 0.5
(filled circles), and 0.0 (filled diamonds) as a function of wave
number qd.
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FIG. 5 (color online). Dynamic scattering function �qðtÞ for
qd ¼ 4:2 at the glass transition, ’ ¼ ’c, and for slightly lower
volume fraction, ’ ¼ 0:999’c for Newtonian dynamics (N,
dotted curves) with �q ¼ 0, Brownian dynamics (B, full curves),

and granular dynamics (G, dashed curves) with coefficient of
restitution " ¼ 0:5. The Newtonian dynamics is scaled along the
time axis to match the Brownian dynamics at long times. No
such rescaling is possible for the granular dynamics. The inset
shows three lines of equal diffusivity (from top to bottom: D ¼
0:7, 0.8, and 0.9 in relative units) taken from the data of a
computer simulation [12].
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