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Abstract – We present a mode-coupling theory for the dynamics of a tagged particle in a driven
granular fluid close to the glass transition. The mean-squared displacement is shown to exhibit
a plateau indicating structural arrest. In contrast to elastic hard-sphere fluids, which are solely
controlled by volume fraction, the localisation length as well as the critical dynamics depend on the
degree of dissipation, parametrized by the coefficient of normal restitution ε. Hence the resulting
glassy structure as well as the critical dynamics are nonuniversal with respect to ε.

Copyright c© EPLA, 2012

Introduction. – Experimental investigations [1–4] as
well as simulations [5,6] of dense assemblies of agitated
granular beads show signatures of a transition from fluid
to glassy behavior. Motivated by the striking similarity
between the measurements for granular systems —neces-
sarily far from equilibrium — and for equilibrium colloidal
systems, we have recently generalized the mode-coupling
theory of the coherent density autocorrelation function
φq(t) to driven dissipative systems [7]. Here, we extend
the analysis to the single-particle dynamics and compute
the incoherent density autocorrelation function φsq(t) as
well as the mean-squared displacement (MSD), which are
directly accessible to experiments.
In two dimensions, experimental measurements of the

MSD δr2(t) are available by direct imaging from air
fluidized [3] and mechanically agitated systems [4]. In
three dimensions, the MSD is observed by diffusive-wave
spectroscopy (DWS) in gravity-driven flows of glass beads
in ambient air [1] and in a water-fluidized bed [2]. All
these studies as well as computer simulations [6] in two-
dimensional systems reveal the development of a plateau
in the MSD and relate their findings to glassy dynam-
ics. With analogous results from colloidal dispersions in
mind, this has been interpreted as the signature of a gran-
ular glass transition. Measurements of additional observ-
ables support this interpretation. Namely, the incoherent
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scattering function has been found to develop a two-step
relaxation at high densities both in experiments [4] and in
simulations [6]. Moreover, plateaus extending over increas-
ingly larger windows in time imply a strong decrease of the
diffusion coefficient D= limt→∞δr2(t)/6t [3,5,6] accompa-
nied by a strong increase of relaxation times, τ , [4,6] upon
approaching the granular glass transition density.
For systems in thermal equilibrium, mode-coupling

theory (MCT) has become an established tool for the
investigation of glassy dynamics, it describes many experi-
mental features and has the potential for nontrivial predic-
tions [8]. Applied to the case of colloidal suspensions, it is
found that MCT is quantitatively accurate to about 20%
in the density. For the mean-squared displacement, MCT
describes the measured data for the entire regime available
which is over eight orders of magnitude in time [9,10].
The granular mode-coupling theory for homogeneously

driven systems, outlined in ref. [7], predicts 1) the exis-
tence of a glass transition, i.e., limt→∞φq(t) = fq > 0,
2) an increase of the packing fraction at the transition,
ϕc(ε), with increased dissipation quantified by the normal
coefficient of restitution ε, and 3) changes to the dynami-
cal exponents with dissipation.
While the glass transition within MCT is found to be

a singularity in the coherent functions φq(t), incoherent
scattering functions φsq(t) and in particular the MSD,
δr2(t), have been measured in the experiments and simu-
lations discussed above. In order to compare to such data,
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the MCT for incoherent functions is derived for granular
systems in the following.

Model. – We consider a granular fluid consisting of N
hard spheres of mass m= 1 and diameter d in a volume
V . Particle positions and velocities are denoted by {�ri, �vi}
and we will consider the thermodynamic limit such that
the density n=N/V is finite. Energy dissipation in binary
collisions is modeled by incomplete normal restitution,
quantified by a constant coefficient of restitution ε. To
achieve a stationary state the system is driven randomly
and homogeneously: All particles are kicked stochastically
at random time intervals. This allows the system to relax
to a stationary state with finite temperature, T , defined
as the average kinetic energy of the particles.
It is important to note that the system is not in

equilibrium so that the N -particle distribution function,
w(Γ), is in general unknown. We assume [11] that positions
and velocities are uncorrelated, w(Γ) =wr({�ri})wv({�vi}),
and that the velocity distribution factorizes into a product
of one-particle distributions, wv({�vi}) =

∏
i w1(�vi). The

precise from of w1(�v) is not needed, it only has to satisfy
1
N

∑
i �v
2
i = 3T , finite. Furthermore, the system is assumed

to be isotropic and homogeneous except for the excluded
volume interaction: wr({�ri}) =

∏
i<j θ(rij − d).

Granular mode-coupling theory. – The dynamics
can be formulated in terms of a Pseudo-Liouville oper-
ator [12], so that techniques for the derivation of MCT
for energy-conserving systems with Newtonian dynamics
in [13] can be used with appropriate changes [7]. The
central quantity to describe the dynamics of a tagged
particle is the incoherent intermediate scattering function

φsq(t) :=

[∫
dΓw(Γ)

1

N

∑
i

exp(i�q · (�ri(t)−�ri(0))
]
,

where [. . .] denotes the average over the random driving.
Using appropriate Mori-projectors, one finds that φsq(t)

obeys the following equation of motion:

∂2t φ
s
q(t)+ ν

s
q∂tφ

s
q(t)+Ω

2
s qφ

s
q(t)

+Ω2s q
∫ t
0
dt′msq(t− t′)∂t′φsq(t′) = 0,

(1a)

formally identical to the equation of motion for an energy
conserving system. Here the friction, νsq , is given by the
same expression as for the coherent part:

νsq = νE
1+ ε

2
[1− j0(qd)+ 2j2(qd)] (1b)

with ji the spherical Bessel functions and with the classi-
cal (equilibrium) Enskog collision rate νE = 4

√
πnd2gdv0

[14] where gd is the contact value of the pair distribu-
tion function g(r) and v0 =

√
T/m is the thermal velocity.

Following ref. [7], we applied the mode-coupling approxi-
mation to the memory kernel msq(t),

msq(t)�
1+ ε

2

n

q2

∫
d3k

(2π)3
(q̂ ·k)2Skc2kφk(t)φs|q−k|(t).

(1c)
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Fig. 1: (Colour on-line) Incoherent scattering functions φsq(t)
for coefficient of restitution ε= 1.0 (dashed curve, elastic case),
0.5 (full curve), and 0.0 (dotted curve) for packing fractions ϕ
from right to left: at the glass transition ϕc(ε), and at
0.999ϕc(ε), 0.99ϕc(ε), and 0.9ϕc(ε), respectively. Solutions of
eq. (1a) are presented for the wave vector qd= 4.2. For ε= 0.5,
an additional solution is shown for ϕ= 0.4 and accompanied
with a solution where the damping νq is set to zero (chain
line).

Details of the derivation from the microscopic dynamics
will be published elsewhere. Here the φq(t) are given
by the solutions of the coherent MCT equations [7],
Sk denotes the static structure factor and ck the direct
correlation function. In contrast to the coherent case, the
frequency Ω2s q = q

2T does not carry any dependence on
the coefficient of restitution ε. The equations of motion,
eq. (1), are solved with the initial conditions φsq(0) =
1, ∂tφ

s
q(0) = 0. The numerical algorithms for solving the

equations of motion for the coherent and the incoherent
intermediate scattering function as well as for the MSD
have been introduced previously [7,10,15].
To be consistent with the results for the coherent func-

tions [7], equilibrium values are used in the calculations
for the static structure within the Percus-Yevick approxi-
mation [16]. This approximation can be relaxed by using
directly the static structure from numerical simulation.

Intermediate scattering functions. – Figure 1
shows the solutions for the wave vector qd= 4.2 which is
at about half of the principal peak in the static structure
factor Sq. For increasing packing fraction ϕ= πnd

3/6,
the scattering functions develop a plateau for 0� ε� 1.
For smaller ε, the critical plateau value fsq = limt→∞φsq(t)
at the transition point increases. It is seen in fig. 2 that
this increase with ε applies to all wave vectors for fsq .
The increase results in a growing half width of fsq as a
function of wave number, which is related to the inverse
localization length of a tagged particle.
One important result of MCT is the existence of two

time scales, which both diverge with the distance from
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Fig. 2: (Colour on-line) Glass form factors fsq (upper panel)
and critical amplitudes hsq (lower panel), cf. eq. (2), for the
incoherent scattering functions for coefficient of restitution
ε= 1.0 (squares), 0.5 (circles), and 0.0 (diamonds). The
inset shows the exponent parameter λ(∗), the von-Schweidler
exponent b(+), and the packing fraction at the transition ϕc

(×) depending on the coefficient of restitution ε.

the critical point, σ= (ϕc−ϕ)/ϕc. The first one, tσ ∝
σ−1/(2a) rules the dynamics near the plateau, whereas τ ∝
σ−γ , γ = 1/(2a)+ 1/(2b) determines the asymptotic time
dependence, i.e., the α-relaxation and the critical behavior
of the diffusion coefficient. As for the elastic case, both
exponents a and b are expressed by a single exponent
parameter λ, which varies with ε as shown in the inset
of fig. 2.
The plateau values, or glass form factors, fsq form the

basis for the asymptotic expansion of the MCT equations
of motion around the plateau [17]. Close to the transition
point, the correlation function in the vicinity of the plateau
can be expanded in leading order as

φsq(t;σ) = f
s
q +h

s
qGσ(t), (2a)

which defines the critical amplitudes hsq shown in the lower
panel of fig. 2. While fsq and h

s
q are fixed by the details of

the equations of motion at the transition point, σ= 0, the
scaling function Gσ(t) depends only on the time t and the
distance σ from the transition point. The scaling law (2a)
reveals a factorization property unique to glassy dynamics,
where the complex dynamics can be separated into a time-
dependent and a wave-number–dependent part. Directly
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Fig. 3: (Colour on-line) α-scaling of the correlators of fig. 1
for coefficient of restitution ε= 0.5 (full curves). Curves are
matched at φsq(t) = 0.4. For comparison, the curve for the
elastic fluid at 0.999ϕc(ε) is shown as dashed line.

at the transition point, eq. (2a) reduces to the critical law

φsq(t;σ) = f
s
q +h

s
q(t/t0)

−a, (2b)

with a microscopic time scale t0 and the exponent a which
is shown in the inset of fig. 2 of [7]. In the fluid state,
close to the transition, the above power law describes the
approach to the plateau value. In the fluid state below the
transition, Gσ(t) describes the decay from the plateau to
zero and in this regime is known as the von-Schweidler law

φsq(t;σ) = f
s
q −hsq(t/τ)b. (2c)

For asymptotically long times, t� tσ, the incoherent
scattering functions obey the so-called α-scaling

φsq(t;σ) = φ̃
s
q(t/τ(σ)), (3)

which connects to the von-Schweidler law for x= t/τ � 1,
whereas for large x, the decay is close to a Kohlrausch
law [18], and crossing over to an exponential for the largest
x. The scaling suggested by eq. (3) is applied to the results
for ε= 0.5 from fig. 1 and displayed in fig. 3. Time scales
τ are determined where the correlation functions cross
the value φ̃sq(τ) = 0.4, and the curves are scaled on top
of the first correlator accordingly. When getting closer to
the transition, the correlation functions follow a master
curve for progressively longer times. In contrast, an equally
extended correlation function for the elastic case, i.e., a
different value for ε, clearly violates that scaling. With
the form factors, fsq , and amplitudes, h

s
q, as well as the

exponents b, all being nontrivial functions of ε no such
scaling is expected.
The divergence of the time scale, τ , determines the

vanishing of the diffusion constant D. Both singularities
are governed by the asymptotic law D∝ τ−1 ∝ σγ which
is shown by full lines in fig. 4. Individual symbols in
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Fig. 4: (Colour on-line) Dependence on the packing fraction,
ϕ, of the time scale τ where the incoherent scattering func-
tion φsq(τ) = 0.1 (upper panel), and diffusion coefficients D
(lower panel) derived from the numerical solutions of the equa-
tions of motion for coefficient of restitution ε= 1.0 (squares),
0.5 (circles), and 0.0 (diamonds). The full lines show the
corresponding asymptotic laws τ ∝ [ϕc(ε)−ϕ(ε)]−γ and D∝
[ϕc(ε)−ϕ(ε)]γ . For ε= 1.0, 0.5, and 0.0, the values for γ are
2.46239, 2.34921, and 2.28282, respectively.

the same plots show the actual values retrieved from
the numerical solution of the equations of motion. The
upper panel demonstrates that for sufficiently large time
scales the asymptotic law describes the numerical values
satisfactorily. On the contrary, for distances around 10%
from the critical point and larger, one cannot expect
the asymptotic law to hold —and the early part of the
divergence might even suggest a power law with a different
exponent.
The evolution of the diffusion coefficients in the lower

panel of fig. 4 suggests a quite similar behavior as for τ .
Again the asymptotic law works well very close to the
transition while for larger distances of 10% and more,
the numerical solution diverges markedly slower than the
asymptotic law would suggest.
The structure of eqs. (2), (3) is the same as for the

incoherent functions of the elastic hard-sphere system [17],
including the factorization property for the dynamics
around the plateau. However, the exponent parameter λ
as well as glass form factor (fsq , cf. fig. 2) and the critical
amplitude (hsq, cf. fig. 2) do depend on the coefficient of
restitution. Hence we conclude that the dynamics is not
universal with respect to dissipation.

Mean-squared displacement. – Experiments as well
as simulations focus on the MSD which is defined by

δr2(t) :=

[∫
dΓw(Γ)

1

N

∑
i

(�ri(t)−�ri(0))2
]

and can also be obtained from the expansion of φsq(t) = 1−
q2δr2(t)+O(q4) for small wave numbers. The equation of
motion for the MSD in the granular case reads

∂tδr
2(t)+ 1+ε2 νEδr

2(t)

+v20
∫ t
0
dt′m(0)(t− t′)δr2(t′) = 6v20t

(4a)

and the memory kernel within MCT is given by m(0)(t) =
limq→0q2msq(t), and reads

m(0)(t) =
1+ ε

2

n

6π2

∫ ∞
0

dk k4Skc
2
kφk(t)φ

s
k(t). (4b)

The behavior of the MSD at the respective critical
points for several ε is shown in fig. 5. The effective Enskog
damping coefficient νE(1+ ε)/2 decreases for smaller ε,
and this lesser damping causes the MSD for ε= 0 to
be slightly larger than that for ε= 0.5 and ε= 1 in the
time window −2� log10t�−1 after the ballistic regime.
For macroscopic times the solutions reverse their order
and finally reach their long-time limits 6r2c with the
localization length being defined by

r2c = lim
t→∞ δr

2(t)/6 = 1/ lim
t→∞m

(0)(t). (5a)

Similarly to the glass form factors, for the MSD an
asymptotic expansion can be performed with the result
similar to eq. (2)

δr2(t)/6 = r2c −hMSDGσ(t). (5b)

Together with the critical,

δr2(t)/6 = r2c −hMSD(t/t0)−a, (5c)

and the von-Schweidler law,

δr2(t)/6 = r2c +hMSD(t/τ)
b, (5d)

the analysis of the elastic hard-sphere systems in [17]
carries over to the dissipative case. The evolution of rc
and hMSD with ε are shown in the insets of figs. 5 and 6.
In addition, the limited applicability of the asymptotic
critical law due to large corrections to scaling applies to
elastic as well as dissipative hard spheres [10].
It is seen in the inset of fig. 5 that rc decreases with

ε which is corresponding to a higher packing fraction at
the glass transition (cf. inset of fig. 2). In the inset of
fig. 5 we show rc as a function of ε. Based on the explicit
dependence of the memory kernel on ε one would predict
rc to decrease with ε, whereas the increase of the critical
packing fraction with increasing dissipation would suggest
the opposite effect. Hence the dependence is nontrivial
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Fig. 5: (Colour on-line) Mean-squared displacement δr2(t) at
the glass transition packing fraction ϕc(ε) for coefficient of
restitution ε= 1.0, 0.5, and 0.0 decreasing from top to bottom
at long times. Full curves show the numerical solutions of
eq. (4). The dashed curve displays the critical law in eq. (5c)
with t0 = 0.035 for the case ε= 1.0. The inset shows the
localization length, cf. eq. (5a), as a function of ε with ε= 1.0,
0.5, and 0.0 shown as filled circles. The chain curve shows
the elastic limit rc(ε= 1) scaled by the evolution of the mean
particle separation, 
0 ∝ 1/(ϕc(ε)/ϕc(1))1/3. The dashed curve
indicates the calculated localization length with the latter
dependence scaled out.
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Fig. 6: (Colour on-line) Mean-squared displacement δr2(t) for
coefficient of restitution ε= 0.5 and packing fractions ϕ=ϕc,
1.001ϕc, 1.01ϕc, 1.1ϕc, on the arrested side —0.999ϕc, 0.99ϕc,
0.9ϕc, and 0.4, respectively, on the diffusive side. The terms
liquid and glass indicate the diffusive and arrested regimes,
respectively. Dashed curves show the results for the critical
point and ϕ= 0.4 with the choice of νq = ν

s
q = νE = 0. The

initial ballistic law v20t
2 is shown by a dotted straight line. The

inset exhibits the critical amplitude hMSD as a function of ε.

and in fact we observe a decrease of rc with increasing
dissipation which is even stronger than the effect of the
critical density alone.

While the overall decrease of rc from ε= 1 to ε= 0
is more than 16%, the trivial contribution from the
increase in density can explain only 4% of the decrease:
A length scale can be defined by the inverse cubic
root of the packing fraction which gives a scaling factor
(ϕc(ε)/ϕc(ε= 1))1/3. When the calculated results are
scaled with this factor, the dashed curve in the inset of
fig. 5 is found. Hence, the major part of the decrease of
the localization length is a more involved prediction than
just a simple density scaling argument.

Short-time dynamics. – It is known that the damp-
ing νq together with the early part of the memory kernel
can overestimate the total damping considerably, which is
an issue that cannot be fully resolved [8]. It is possible
to estimate the order of magnitude of that effect without
introducing mathematical inconsistencies by setting all the
damping terms, νq, ν

s
q , νE to zero and solve the equa-

tions. The result is shown as the chain curve for φsq(t) in
fig. 1 for ε= 0.5 and ϕ= 0.4. Outside the transient regime,
the undamped solution is shifted by 45% compared to the
damped solution. For the MSD in fig. 6 for the same values
of ε and ϕ, it results in a similar shift of 45% in time
scales. At the transition point, however, the solutions with
and without damping deviate from each other for the rela-
tively large window −2< log10t < 1, which is still outside
the regime of applicability of the power law discussed
above. It is also seen that the curves with Enskog damping
deviate from the short-time asymptote 3v20t

2 considerably
earlier in time. Together, those effects can mask the glassy
dynamics expected for moderately large windows in time
that are accessible to experiments and simulation.

Summary and outlook. – In conclusion, the results
discussed above and in [7] suggest for testing the theory
experimentally. While for the variation of the packing
fraction, ϕ, one expects to recover most features known
from the thermal glass transition — from the variation of
ε the following scenario should emerge:
1) The glass transition shifts to higher packing fractions
ϕc for lower ε, cf. inset of fig. 2. Since the overall
change is around 10% it should be measurable directly.
The behavior of time scales and diffusion coefficient of
the MSD demonstrated in fig. 4 supports the possibility
of extracting this change from a dynamical experiment;
even the asymptotic scaling law can be used reliably.
In experiments on elastic systems, it is found that the
critical density is shifted to higher values, ϕcexp ≈ 0.58,
as compared to the MCT prediction. Hence, also the
transition for dissipative systems will be shifted to yet
higher values of ϕ.
2) The localization length rc decreases for the mean-

squared displacement (cf. inset of fig. 5), and the corre-
sponding plateau values fsq (cf. fig. 2) increase for smaller
ε. While an absolute determination of fsq and rc from
measured δr2(t) and φsq(t) may be ambiguous due to
limited windows in time, a comparative measurement
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between different ε should be within experimental reso-
lution for the MSD, cf. fig. 5.
3) The α-scaling function for the long-time decay of the

correlation functions and the MSD changes with ε. Since
absolute changes in the critical exponents are comparably
small, see inset of fig. 2, direct observation of changes
in the exponents is probably rather difficult. However, a
qualitative method is given by testing the α-scaling: For
fixed ε, curves for different ϕ scale along their plateau
value onto a single master curve, cf. figs. 1 and 3. In
contrast, when going on a path along the transition in
the ε direction, a violation of this α-scaling is expected.
While one can expect that the overall behavior of

the MCT for granular systems is similar in two and
three dimensions as is the case for the elastic hard-
sphere system [19], the necessary glass form factors,
critical amplitudes, and exponents cannot be estimated
without performing the actual calculation. The dynamical
scenarios observed in two dimensions [3,6] nevertheless
support the existence of a glass transition in a driven
granular fluid. In addition, a scenario for the evolution
of φsq(t) is found in [4] that is quite reminiscent of the
3D case shown in fig. 1. However, in contrast to the
binary mixture in [3], the results from [4] have to be taken
with some caution as the monodisperse experiment has a
higher tendency towards ordering which may influence the
observed dynamics. In all two-dimensional experiments,
the estimated plateau of the MSD is around 4r2c ≈ 0.01d2,
which is consistent with results anticipated from fig. 5.
However, the values reported for the localization length in
refs. [1,2] are smaller than predicted here by a factor of
103. One possible explanation for such a deviation is the
influence of accelerations due to gravity [20] which might
be remedied by future experiments under microgravity.
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