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Glass transition in driven granular fluids: A mode-coupling approach
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We consider the stationary state of a fluid comprised of inelastic hard spheres or disks under the influence of
a random, momentum-conserving external force. Starting from the microscopic description of the dynamics, we
derive a nonlinear equation of motion for the coherent scattering function in two and three space dimensions. A
glass transition is observed for all coefficients of restitution, ε, at a critical packing fraction ϕc(ε) below random
close packing. The divergence of timescales at the glass transition implies a dependence on compression rate
upon further increase of the density—similar to the cooling-rate dependence of a thermal glass. The critical
dynamics for coherent motion as well as tagged particle dynamics is analyzed and shown to be nonuniversal with
exponents depending on space dimension and degree of dissipation.
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I. INTRODUCTION

A wide range of fluids can be quenched into a disordered
solid state. This includes metallic melts [1], colloidal suspen-
sions [2], foams [3] and, recently, evidence was given that
granular fluids may also undergo a glass transition [4–10].
Among all these different systems, colloidal suspensions are
probably the best understood. Experiments by van Megen
et al. [2,11] showed that, besides the fluid and the ordered
crystalline phase, colloidal suspensions in thermal equilibrium
can also form colloidal glasses: A dynamically arrested
state of the system which is characterized by diverging
relaxation times [12]. While a complete theoretical under-
standing of the glass transition in fragile glass formers is
still missing [13], mode-coupling theories can quite suc-
cessfully describe many of the phenomena on a quantitative
level [14].

One interesting question has been raised more recently:
Does the glass transition survive if the system is driven
by external forcing into a nonequilibrium state? Or more
generally, can one observe a glass transition also in a nonequi-
librium system? A well-studied example is sheared colloidal
suspensions for which it was shown that the equilibrium glass
transition disappears [15,16]. Another example is nonlinear
microrheology [17–19], where a strong pulling force is applied
to a single particle, forcing it out of its cage, thereby possibly
melting the glass.

Another system far from equilibrium is athermal packings
of particles [20,21] undergoing a jamming transition at a
critical packing fraction. Many of the properties close to
the jamming point resemble those of fluids at the glass
transition. This observation is at the heart of the jamming
diagram, where the glass transition in thermal systems
and the jamming transition are part of a larger parameter
space [22,23].

Since granular particles are too large to be thermally
activated, one necessarily needs a driving force to keep
the grains in motion for extended periods of time. While
in nature, gravity is probably the most important driving
force [24], experimentalists have devised quite a few methods

of fluidization. The list includes shaking [25], electrostatic
[26,27] or magnetic [27,28] excitation, and fluidization by
air [29,30] or water [31].

We have recently investigated the possibility of a glass
transition in driven granular fluids. In two publications [9,10],
henceforth referred to as I and II, we have demonstrated
that mode-coupling theory (MCT) can be generalized to the
far-from-equilibrium stationary state of a granular fluid. In
particular, we found a granular glass transition for all degrees
of dissipation, accompanied by the common signatures of a
dense fluid close to the glass transition. Here, a careful deriva-
tion of the granular mode-coupling equations is presented
and the consequences of MCT are worked out in detail. We
furthermore extend our previous analysis to two-dimensional
systems, which are realized in many experiments on granular
matter [5,7,8,25,30]. The resulting glass transition diagram is
shown in Fig. 1 in the plane spanned by packing fraction ϕ

and coefficient of restitution, ε.
The dissipative interactions of the granular particles imply

two primary consequences. First, while the dynamics of parti-
cles in thermal equilibrium is microscopically time-reversal
invariant, the symmetry under time reversal is broken for
granular dynamics. Second, there is no natural equilibrium
reference state like for the sheared colloids [15,16], were the
fluid can be thought of as being driven out of equilibrium by
the optional external driving force. In the granular system, the
driving force is required to maintain a stationary state with
more than transient dynamics.

The paper is organized as follows: In Sec. II we define
the model of a driven granular fluid and introduce the
microscopic dynamics in Sec. III. In Sec. IV we derive the
MCT equations for the coherent scattering function φ(q,t),
discuss the asymptotic correlations fq := φ(q,t → ∞), which
is used as an order parameter to locate the glass transition, and
analyze the dynamics close to the glass transition. The MCT
equations for the incoherent scattering function φs(q,t) of a
tagged particle are derived in Sec. V. In Sec. VI we discuss
our results in a broader context and conclude with a number
of perspectives for future work in Sec. VII.
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FIG. 1. (Color online) Critical packing fraction ϕc separating the
fluid from the glassy state of driven granular particles as a function
of the coefficient of restitution, ε, for space dimension D = 2 (top)
and D = 3 (bottom).

II. MODEL

A. Inelastic hard spheres

The granular fluid is modeled as a monodisperse system
of N smooth inelastic hard spheres (in dimension D = 3) or
disks (in D = 2) of radius a and mass m = 1 in a volume
V = LD . We consider the thermodynamic limit N,V → ∞
such that the density n = N/V remains finite. Dissipation is
introduced through a constant coefficient of normal restitution
ε ∈ [0,1] that augments the law of reflection [32],

r̂12 · v′
12 = −ε r̂12 · v12, (1)

where v12 = v1 − v2 is the relative velocity and r̂12 is the unit
vector pointing from the center of particle 2 to particle 1. The
prime indicates postcollisional quantities.

B. Stochastic driving force

The driving force is implemented as an external random
force,

v′
i(t) = vi(t) +

√
PD ξ i(t), (2)

where PD is the driving power. The ξα
i , α = 1, . . . ,D are

Gaussian random variables with zero mean and variance,〈
ξα
i (t)ξβ

j (t ′)
〉
ξ

= [δij − δπ(i),j ]δαβδ(t − t ′), (3)

where π (i) = arg mink{|r i − rk| � 
D} yields the index of
the particle that is closest to particle i but at least a given
distance 
D away. In effect, the two particles i and π (i) are
driven by forces of equal strength but opposite direction. On
length scales 
 > 
D , the driving force imparts no momentum
on the system. Thereby, the external force does not destroy
momentum conservation on length scales 
 � 
D . We choose

D on the order of a mean particle separation.

C. The granular fluid

For undriven granular fluids, it is known that the ho-
mogeneous cooling state is unstable to shear fluctuations
and eventually to density fluctuations [33,34]. In fact, the
particles form extremely dense clusters. No such clustering
instability is predicted [33], or indeed observed, for the

randomly driven fluid. Consequently, we assume that the fluid
is macroscopically homogeneous and isotropic. This implies
that all spatial two-point correlation functions C(r,r ′) are
functions of the distance |r − r ′| only.

Macroscopically, the fluid is fully characterized by the
packing fraction ϕ (where ϕ = πnd3/6 in D = 3 and ϕ =
πnd2/4 in D = 2), the coefficient of restitution, ε, and
the driving power PD . In the stationary state, the granular
temperature T = T (ϕ, ε, PD) = 1

DN

∑
i v

2
i is given by the

balance between the driving power PD and the energy loss
through the inelastic collisions.

The collision frequency ωc ∝ √
T is the only time scale

of the system. Thus, changing the granular temperature only
changes the time scale of the system. To keep the discussion
more transparent, we refrain from using the freedom to set
T = 1 but keep in mind that the qualitative behavior of the
system is independent of the temperature T > 0.

III. MICROSCOPIC DESCRIPTION

A. Observables

The two relevant observables discussed in the following are
the density field ρ(r,t) and the current density j (r,t) with the
following microscopic definitions:

ρ(r,t) = 1

N

∑
i

δ (r − r i(t)) , (4a)

j (r,t) = 1

N

∑
i

vi(t)δ (r − r i(t)) . (4b)

We will use the spatial Fourier transforms ρk(t) =
FT[ρ](k,t) [35] and the longitudinal current jL

k (t) = k̂ ·
FT[ j ](k,t). The corresponding tagged particle quantities are
given as

ρs(r,t) = δ (r − rs(t)) , (5a)

j s(r,t) = vsδ (r − rs(t)) . (5b)

B. Dynamics

The (forward in time) pseudo Liouville operator Ľ+
describes the time evolution of a microscopic observable
A, i.e., iĽ+A = dA/dt , according to the dynamics specified
above [36]. It is given as the sum of three parts,

Ľ+(t) = L0 +
∑
j<k

T +
jk + Ľ+

D(t), (6)

which are in turn (i) the free streaming operator iL0 = ∑
j vj ·

∇j ; (ii) the collision operator,

iT +
jk = −(r̂jk · vjk)  (−r̂jk · vjk)δ(rjk − d)(b+

jk − 1), (7)

where (x) denotes the Heaviside step function and the
operator b+

jk implements the inelastic collision rule [37]; and
(iii) the driving operator

iĽ+
D(t) =

√
PD

∑
j

ξ j (t) ·
(

∂

∂vj

− ∂

∂vπ(j )

)
. (8)

With the binary collision expansion [38], formal power
series of the pseudo Liouville operator can be defined. In
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particular, this allows us to write the propagator Ǔ(t) =
expT

∫ t

0 Ľ+(τ )dτ in terms of a time-ordered exponential [39].
The time ordering is needed because the driving part of the
Liouville operator is explicitly time dependent.

C. Scattering functions

The central quantities in the following will be the coherent
scattering function

φ(q,t) = N〈〈ρ−q(0)ρq(t)〉〉/Sq, (9a)

where Sq = N〈〈ρ−qρq〉〉, and the incoherent scattering func-
tion

φs(q,t) = 〈〈
ρs

−q(0)ρs
q(t)

〉〉
. (9b)

Both correlation functions are introduced (cf. Appendix A)
as expectation values 〈〈A(t)B(t ′)〉〉 ≡ 〈〈A(t)B(t ′)〉�〉 :=∫

d��(�)〈A(�,t)B(�,t ′)〉� with respect to the trajec-
tory of the random driving force up to time t ,
�t := {(ξ 1(τ ), . . . ,ξN (τ ))|0 � τ � t} and to the station-
ary phase space distribution function �(�). Here, � :=
(r1,v1, . . . ,rN,vN ) denotes a location in phase space.

In contrast to fluids in equilibrium, no analytical expression
for the stationary phase space distribution of driven granular
fluids is known so far. Therefore we have to make a few
assumptions to evaluate the expectation values. First of all we
assume that positions and velocities are uncorrelated; �(�) =
�r ({r i})�v({vi}). Moreover, we assume that the velocity
distribution factorizes into a product of one particle distribution
functions, �v({vi}) = ∏

i �1(vi). All we need to know about
�1(v) is that it has a vanishing first moment,

∫
dDv v�1(v) = 0

and a finite second moment,
∫

dDv v2�1(v) = DT < ∞. The
spatial distribution function �r ({r i}) enters the theory via the
static correlation function, as will be discussed below.

In general, all macroscopic quantities will be functions
of the coefficient of restitution ε. To reduce clutter, we will
suppress this dependence.

D. Static structure factors

Below, we will treat the static structure functions as a known
input. Hence, we need Sq = Sq(ϕ,ε) for a range of densities ϕ

around where we expect the critical density to be. Lacking
good quality data for Sq(ϕ ∼ ϕc(ε), ε), let alone reliable
theoretical predictions for this quantity, we use preliminary
results that Sq(ϕ, ε) only weakly depends on the coefficient of
restitution ε and approximate Sq(ϕ, ε) ≈ Sq(ϕ, ε = 1) by their
elastic counterparts: In D = 3 we use the Percus-Yevick (PY)
equation [40] for elastic hard spheres in thermal equilibrium
[41], except for the pair correlation function at contact which
is better approximated by the Carnahan-Starling expression
[42]. In D = 2 we use the Baus-Colot (BC) equation [43]
throughout.

E. Effective dynamics

Because the density ρq does not depend on the driving force
�t explicitly, the coherent scattering function

φ(q,t) = 〈〈ρ−qǓ(t)ρq〉�〉 = 〈ρ−qU(t)ρq〉 (10)

can be given in terms of an average propagator U(t) =
〈Ǔ(t)〉�. The same argument holds for the incoherent scattering
function φs(q,t). Associated with this average propagator
is an effective, time-independent pseudo Liouville operator,
U(t) = exp(itL+) := ∑

n(itL+)n/n!. There is no need for
time ordering anymore.

A standard procedure [39] shows that the effective pseudo
Liouville operator is given as

L+ = L0 +
∑
j<k

T +
jk + L+

D, (11)

where L+
D = PD

∑
j

∂2

∂vj
. From here on, we will only use the

effective dynamics.
Averages over pairs of observables define a scalar product,

〈A|B〉 := 〈A∗B〉 where A∗ denotes the complex conjugate of
A. Given the definition of a scalar product, we can formally
introduce the adjoint Liouville operator L†

+ via the relation
〈L†

+A|B〉 = 〈A|L+B〉. For elastic hard spheres in thermal
equilibrium, it can be shown that detailed balance implies
L†

+(ε = 1) = L−(ε = 1), where L− is the Liouville operator
describing time-reversed dynamics. This relation does not hold
for inelastic collisions which are discussed here. In the present
context, an explicit expression for L†

+ is not needed and hence
will be given elsewhere.

The homogeneity of the system is reflected in the matrix
elements

〈A1(k1) · · · An(kn)|B1( p1) · · · Bm( pm)〉 ∝ δ∑
ki ,

∑
pi

in the form of a selection rule. Here, the Ai(ki), Bi( pi) are
arbitrary microscopic observables and ki , pi are wave vectors.

The starting point for the derivation of equations of motion
is an operator identity that is most concisely expressed in the
Laplace domain [44],

PÛ(s)P = [s − � − M̂(s)]−1, (12)

where � = PL+P ,

M(t) = PL+Q exp(itQL+Q)QL+P, (13)

and P = P2, Q = 1 − P are projection operators [45].
The Laplace-transformed propagator Û(s) ≡ LT[U](s) = (s −
L+)−1 is defined as a power series.

IV. GRANULAR GLASS TRANSITION

A. Equations of motion

Let us introduce the following microscopic state vector:
aq = √

N (ρq/
√

Sq, j
L
q /

√
T ). Then the coherent scattering

function φ(q,t) is given as one element of the matrix of
correlators �(q,t) = 〈aq |U(t)aq〉.

With the help of Eq. (12) and the coherent projectors

Pc = N
∑

q

|ρq〉〈ρq |/Sq +
∑

q

∣∣jL
q

〉〈
jL

q

∣∣/〈jL
q |jL

q

〉
, (14)

Qc = 1 − Pc, one finds

�̂−1(q,s) =
(

s −�ρj (q)[1 + L̂(q,s)]

−�jρ(q) s − iνq − M̂(q,s)

)
, (15)
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while �ρρ ∝ 〈ρq |L+ρq〉 = q〈ρq |jL
q 〉 = 0 due to the assumed

symmetry of the velocity distribution. The other entries of
the frequency matrix �ab = 〈aq |�aq〉 are nonzero [note that
iνq = �jj (q)].

The memory kernels are formally given as

M(q,t) = N〈F †
q |Ũ(t)Fq〉/T , (16a)

L(q,t) = 〈J †
q |Ũ(t)Fq〉

/〈
ρq

∣∣L+jL
q

〉
, (16b)

where Ũ(t) = exp(itQcL+Qc) is a modified propagator. There
are two fluctuating forces, Fq = QcL+jL

q and F
†
q = QcL†

+jL
q ,

and at this point we cannot rule out that there is a nonzero
fluctuating current, J

†
q = QcL†

+ρq , while Jq = QcL+ρq =
qQcj

L
q = 0. In the elastic limit F

†
q = Fq and J

†
q = Jq = 0

holds and therefore L(q,t) vanishes.
In the Laplace domain, the coherent scattering function is

thus given as

φ̂−1(q,s) = s − �2
q[1 + L̂(q,s)]

s − iνq − M̂(q,s)
, (17)

where �2
q = �ρj�jρ or, equivalently, in the time domain as

the solution of the equation of motion,

0 = φ̈(q,t) + νqφ̇(q,t) + �2
qφ(q,t)

+�2
q

∫ t

0
dτ m(q, t − τ )φ̇(q,τ )

+�2
q

∫ t

0
dτ L(q, t − τ )φ(q,τ ), (18)

where m(q,t) = M(q,t)/�2
q and the initial conditions are

φ̇(q, t = 0) = 0 and φ(q, t = 0) = 1.
Note that, while the memory kernel M(q,t) is defined as

a dynamic correlation function in Eq. (16a), it is a cross-
correlation function in general and an autocorrelation function
only in the elastic limit ε = 1. For ε < 1, the memory kernel
M(q,t) is still a fluctuating force correlator, modified by
the inelasticity of the interactions. While the memory kernel
L(q,t) vanishes exactly in the elastic limit, in inelastic systems
it quantifies through a fluctuating current J

†
q the violation of

detailed balance. Within the mode-coupling approximation
discussed below, the memory kernel L(q,t) vanishes and plays
no further role.

To proceed, we need to find approximate expressions
for the memory kernels. Before we come to the mode-
coupling approximation, we discuss the simpler assumption
that M(q,t) = L(q,t) = 0.

B. Sound waves

The linear equation of motion

φ̈(q,t) + νqφ̇(q,t) + �2
qφ(q,t) = 0 (19)

describes damped sound waves φ(q,t) = e−νq t/2 cos(Cqqt).
Sound damping due to collisions, as described by the second

term in Eq. (19),

iνq = N
〈
jL

q

∣∣L+jL
q

〉/
T , (20)

can be evaluated with Enskog’s method [46,47]. The cal-
culation for two dimensions is shown in Appendix C 1,

yielding

νq = 1 + ε

2
ωE[1 + 2J ′′

0 (qd)] (21a)

in D = 2, where J0(x) is the zeroth-order Bessel function
[48] and the double prime denotes the second derivative with
respect to the argument. The result in three dimensions is
known [47]:

νq = 1 + ε

3
ωE[1 + 3j ′′

0 (qd)] (21b)

in D = 3, where j0(x) = sin(x)/x is the zeroth-order spherical
Bessel function [49]. The Enskog collision frequency ωE =
2DD(ϕχ/d)

√
T/π is given in terms of the contact value, χ ,

of the pair correlation function [50].
The wave-number dependent speed of sound is given by

C2
q = �2

q/q
2 = �ρj�jρ/q

2. One finds

�jρ = N
〈
jL

q

∣∣L+ρq
〉/√

T Sq

= qS

(q)
√

T/Sq, (22a)

with the longitudinal current correlator S

(q) :=
N〈jL

q |jL
q 〉/T . The calculation (cf. Appendix C 2) of

�ρj = N√
T Sq

〈
ρq

∣∣L+jL
q

〉
(22b)

≈ q
√

T/Sq

(
1 + ε

2
+ 1 − ε

2
Sq

)
(22b)

uses the approximate granular Yvon-Born-Green (YBG) rela-
tion (cf. Appendix B). Combining these results, we find that
the speed of sound

C2
q = T

S

(q)

Sq

(
1 + ε

2
+ 1 − ε

2
Sq

)
(23)

is reduced for the dissipative driven fluid compared to a
fluid of elastic hard spheres in thermal equilibrium. The
sound damping νq/(2q2), on the other hand, decreases with
increasing dissipation.

Alternatively, the speed of sound can be given as C2
q =

S

(q)/(nκeff
q ), where the effective compressibility κeff

q is
defined in a form

1

κeff
q

= 1

κ0
q

+ 1 − ε

2
T n2cq, (24)

reminiscent of a random phase approximation [51]. Here, κ0
q =

Sq/(nT ) is the compressibility of a fictitious elastic hard sphere
system with a structure factor Sq and cq is the direct correlation
function [50].

We close this section with a few remarks. First, in a
thermal fluid the expression for the sound velocity simplifies,
because S

(q) ≡ 1 due to molecular chaos [52]. In a granular
fluid, S

(q) is actually found to be wave-number dependent.
Preliminary results indicate S

(q → 0) < 1. Second, from
�ρj �= �jρ for ε < 1, it can be seen explicitly that the
Liouville operator is not self-adjoint. In terms of physical
processes, this reflects the transition rate for the conversion of
density fluctuations into current fluctuations not being equal
to the rate of the reverse process. Detailed balance or more
general time-reversal invariance is broken already for the
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FIG. 2. (Color online) Speed of sound Cq according to Eq. (23)
as a function of wave number q in 3D for packing fraction ϕ = 0.516
and coefficient of restitution ε = 1.0 (squares), 0.5 (filled circles),
and 0.0 (diamonds).

linear equation of motion (cf. Sec. V A below). Finally, it is
known [50] that Navier-Stokes–order hydrodynamics does not
exist in D = 2, presumably implying logarithmic corrections
to the sound damping in D = 2.

In the following, we set S

(q) ≡ 1. In Fig. 2, the resulting
sound dispersion relations are shown for the packing fraction
ϕ = 0.516 and the coefficient of restitution varying from ε = 1
to 0. The speed of sound decreases with increasing dissipation,
in agreement with hydrodynamic predictions [53].

C. Mode-coupling approximation

In the spirit of the equilibrium mode-coupling theories
[54–57], we introduce a second projection operator

P2 =
∑
k< p

|ρkρ p〉〈ρkρ p|/〈ρkρ p|ρkρ p〉 (25)

and approximate the modified propagator as

Ũ(t) ≈ P2Ũ(t)P2

≈ N2
∑
k< p

|ρkρ p〉φ(k,t)φ(p,t)〈ρkρ p|/(SkSp), (26)

where a factorization approximation,

〈ρkρ p|Ũ(t)ρkρ p〉〈ρkρ p|ρkρ p〉 ≈ φ(k,t)φ(p,t),

was employed. Equation (26) is known as the mode-coupling
approximation (MCA).

1. Mode-coupling approximation of L

We find

L(q,t) ≈ N

qT

∑
k< p

Uqk pWqk pφ(k,t)φ(p,t), (27)

where

Uqk p = N〈ρq |L+Qcρkρp〉/Sk = 0 (28)

due to parity and where Wqk p is defined below. Therefore
L(q,t) ≡ 0 within the mode-coupling approximation.

2. Mode-coupling approximation of M

The mode-coupling approximation for M(q,t) yields

M(q,t) ≈ N

T

∑
k< p

Vqk pWqk pφ(k,t)φ(p,t), (29)

where

Vqk p = N
〈
jL

q

∣∣L+Qcρkρ p
〉/

Sk, (30a)

Wqk p = N
〈
ρkρ p

∣∣QcL+jL
q

〉/
Sp. (30b)

The left vertex is known from the literature [58]:

Vqk p = T

NSk

[(q̂ · k)Sp + (q̂ · p)Sk

− qS(3)(k, p)/Sq]δq,k+ p.

Customarily, the convolution approximation [59] S(3)(k, p) ≈
SkSpSq is applied to yield

Vqk p = T

N
Sp[(q̂ · k)nck + (q̂ · p)ncp]δq,k+ p. (31a)

By a nontrivial calculation (see Appendix C 3), we were able
to show that the right vertex is approximately given as

Wqk p ≈ 1 + ε

2

T

N
Sk[(q̂ · k)nck + (q̂ · p)ncp]δq,k+ p, (31b)

which is different fromVqk p.
The physical interpretation of these results for the vertices

is that (i) the rate of annihilation of pairs of density fluctuations
ρk, ρ p is determined by the static structure of the fluid, both
in an equilibrium fluid and in the driven granular fluid; (ii) the
rate of creation of such density fluctuations is suppressed by
a factor (1 + ε)/2, though, compared with the rate of creation
or with the equivalent rate in an equilibrium fluid.

The reduced memory kernel in the mode-coupling approx-
imation (reported in I) then reads

m[φ](q,t)

= Aq(ε)
nSq

q2

∫
dDk

(2π )D
SkS|q − k|

× {[q̂ · k]ck + [q̂ · (q − k)]cp}2φ(k,t)φ(|q − k|,t), (32)

where

A−1
q (ε) = 1 + 1 − ε

1 + ε
Sq. (33)

Figure 3 demonstrates the prefactor Aq (ε) that distinguishes
the granular memory functions from the well-known elastic
results where Aq(ε = 1.0) = 1: For ε < 1, the prefactor
exhibits deviations from unity with oscillations given by the
static structure factor. As Aq(ε) is minimal for the first peak
of the structure factor, i.e., the length scale of the cage, one
concludes that increasing dissipation (decreasing coefficient of
restitution) weakens the cage effect. Compared to the elastic
case, the force acting by the cage onto the particles inside the
cage is smaller as the particles’ reflections from each other
are reduced by the influence of dissipation. While additional
changes are expected by the ε dependence of the structure
factors, the major difference is encoded in the prefactor Aq(ε).
The fact that Aq(ε) > 0 for all values of the coefficient of
restitution ε ensures that the memory kernel remains positive.
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FIG. 3. (Color online) Prefactor of memory kernel Aq (ε) as a
function of wave number q for two values of the coefficient of
restitution, ε = 0.5 (filled circles) and 0.0 (diamonds), in 3D.

D. Approximate equation of motion and phase diagram

With the mode-coupling approximations in place, the
equation of motion

0 = φ̈(q,t) + νqφ̇(q,t) + �2
qφ(q,t)

+�2
q

∫ t

0
dτ m[φ](q,t − τ )φ̇(q,τ ) (34)

turns into a closed equation for the coherent scattering
function once the static structure factor Sq is known. This
equation of motion has the same formal structure as the one
for the elastic hard-sphere fluid in thermal equilibrium. The
viscous term, Eq. (20), decreases with decreasing coefficient
of restitution ε; the speed of sound, Eq. (23), acquires a
nontrivial dependence on the coefficient of restitution as does
the memory kernel m[φ].

Structural arrest of the grains in a glassy state gives rise to
time-persistent density correlations. Hence, we introduce the
order parameter for the glass transition, fq := limt→∞ φ(q,t).
It can readily be shown that the above equation of motion
yields the following equation for the asymptotic function fq :

fq

1 − fq

= m[f ](q). (35)

With the memory kernel being independent of temperature,
the order parameter fq is also independent of temperature,
as expected. It can easily be checked that fq ≡ 0 is always a
solution of the above equation. Studying this equation from a
dynamical-systems point of view, one finds that, at a critical
density ϕc, the vanishing solution becomes unstable and a new,
stable solution fq > 0 appears discontinuously, signaling the
glass transition [14]. The order parameter at the critical density
ϕc will be denoted as f c

q .
Using the structure factors as discussed in Sec. III D, we

find the phase diagrams in Fig. 1 for D = 3 (as reported in
I) and D = 2 (for technical parameters cf. Appendix D). The
order parameter jumps discontinuously at the critical density
ϕc as expected [14] from the type of singularity in Eq. (35). The
evolution of the transition with ε is remarkably similar for two
dimensions (2D) and three dimensions (3D), with transition
densities increasing from the elastic case to ε = 0.0 by around
10% in a roughly linear fashion.

-2 -1 0 1 2 3 4 5 6
log10t
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φ(q, t)

ϕc

1.1ϕc

1.01ϕc

1.001ϕc

0.9ϕc

0.99ϕc

0.999ϕc

t-a

FIG. 4. (Color online) Coherent scattering functions φ(q,t) as a
function of time t in 3D for wave number qd = 4.2. At the transition
point at packing fraction ϕc(ε = 0.5) = 0.548 with a critical glass-
form factor of f c

q = 0.400, and at higher (1.1ϕc, 1.01ϕc, 1.001ϕc)
and lower (0.9ϕc, 0.99ϕc, 0.999ϕc) packing fractions. The exponent
parameter is λ = 0.710 which yields the critical exponent a = 0.323
and von Schweidler exponent b = 0.624. The critical amplitude for
qd = 4.2 is hq = 0.583. The critical law labeled t−a is shown as a
dashed curve for a time scale t0 = 0.0260.

E. Coherent dynamics close to glass transition

The full dynamics of density fluctuations is obtained by
solving the MCT equations by iteration (for details, see
Appendix D). In Figs. 4 and 5 we show the coherent scattering
function in D = 3 for several densities, below and above
the critical point for ε = 0.5 and two wave numbers qd =
4.2 and qd = 7. As the critical point is approached from
the fluid side, one observes the development of a plateau
in the coherent scattering function. Increasing the density
above the critical value ϕc leads to an increase in the order
parameter fq [60].

The MCT equations of motion are known to admit scaling
solutions close to the critical point [14,61]. As the granular
mode-coupling equations are formally identical to those for

-2 -1 0 1 2 3 4 5 6
log10t
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0.8

1
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ϕc
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1.01ϕc
1.001ϕc

0.9ϕc

0.99ϕc

0.999ϕc

FIG. 5. (Color online) Coherent scattering functions φ(q,t) as a
function of time t in 3D (cf. Fig. 4) for a different wave number
qd = 7. The critical amplitude for qd = 7 is hq = 0.367. The von
Schweidler law is shown as a dashed curve for a fitting time scale
τ = 1.21 × 105.
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an equilibrium hard-sphere fluid, the scaling analysis is also
closely related. To keep the presentation self-contained, we
will summarize the main results of this analysis. The analogous
analysis for the incoherent scattering function discussed below
in Sec. V was presented in II.

At small distances σ (ε) := [ϕc(ε) − ϕ]/ϕc(ε) to the critical
point, one finds

φ(q,t ; σ ) = f c
q + hqGσ (t), (36)

where hq = hq(ε) is the critical amplitude and Gσ (t) is a
scaling function, independent of the wave number. The scaling
function Gσ (t) can be characterized by a hierarchy of time
scales. The shortest time scale is naturally provided by the
mean time between collisions, t0 ≡ ω−1

c . The time scale tσ for
the transition through the plateau, where φ(q,tσ ; σ ) = f c

q ,
diverges at the glass transition as tσ ∝ σ−δ where δ = 1/(2a).
For short but macroscopic times, in the β regime, one finds

Gσ (t) ∝ (t/t0)−a, t0 � t � tσ . (37a)

For larger times, t � tσ but still well below the so-called α-
relaxation time scale τ ,

Gσ (t) ∝ −(t/tσ )b, tσ � t � τ. (37b)

Finally, for the largest times the time-density superposition
principle holds, i.e., the coherent scattering functions can be
collapsed onto a master curve

φ(q,t ; σ ) = φ̃ (q,t/τ (q; σ )) . (38)

The time scale τ diverges at the glass transition, τ =
τ (q; σ ) ∝ σ−γ where γ = 1/(2a) + 1/(2b). An empirical
choice for the scaling function φ̃(q,t) is provided by the
Kohlrausch-Williams-Watts law φ̃KWW(q,t) ∝ exp(−tβ) [62],
crossing over to an exponential decay for the longest times
[63]. The power laws discussed above are valid in the
asymptotic regime close to the transition. The validity may
hence be preempted by the potential importance of decay
processes not captured by MCT [13].

The critical exponents a, b in Eqs. (37) are related to
a single-exponent parameter λ = λ(D,ε) by the universal
relation

λ = �2(1 − a)

�(1 − 2a)
= �2(1 + b)

�(1 + 2b)
, (39)

where �(x) is the Euler Gamma function.
The sets of exponents shown in Figs. 6 and 7 in 3D and

2D, respectively, are functions of the dimension but differ
only slightly between D = 2 and D = 3. Overall, there is a
tendency for the exponents in Figs. 6 and 7 to show slightly
lesser stretching for higher dissipation, i.e., smaller ε. This
may be interpreted as the more dissipative and also more
strongly driven fluid experiencing less distinctive features in its
glassy dynamics. The divergence in time scales is also expected
to be a bit less pronounced. While the predicted changes
in exponents are most likely hard to detect in experiment
and simulation as absolute numbers, one should be able
to detect the changes in comparison of different degrees
of dissipation. Especially, the master functions should be
comparably sensitive to changes in the exponents a and b.

It is seen in Fig. 8 that for smaller ε the order parameter
f c

q decays more slowly for large wave numbers, indicating

1.5
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0 0.2 0.4 0.6 0.8 1
ε
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0.7

γ

δ

λ

b

a

FIG. 6. Complete set of exponents in 3D as a function of the
coefficient of restitution ε. The top panel shows the exponents δ and
γ for the divergence of the time scales. The lower panel shows the ex-
ponents a and b for the master functions and the exponent parameter λ.

a tighter localization. In comparison to 3D, the transition
in 2D exhibits individually sharper peaks and overall a
tighter localization for the same dissipation; cf. Fig. 9. It has
been shown for data from simulation [64] and experiments
in colloidal suspensions [2,65], that the MCT predictions
for the f c

q are typically accurate to around 20%. Hence,
rather than fitting individual f c

q directly to measurements
and numerical calculations, experimental and simulation data
can be expected to follow the distributions shown on the
20% level and exhibit trends with variation of ε as indicated
here.

It is seen in Fig. 4 that the critical law can only be
observed without corrections for states closer than 0.1% to
the transition point. Also, the von Schweidler law in Fig. 5 is
only valid for an intermediate regime after the plateau. The
regimes of applicability for the asymptotic scaling laws are
therefore similar to the elastic case, and corrections to scaling
are expected to follow the known trends [60].
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FIG. 7. Complete set of exponents in 2D as function of the
coefficient of restitution ε. The top panel shows the exponents δ

and γ for the divergence of the time scales. The lower panel shows
the exponents a and b for the master functions and the exponent
parameter λ.
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FIG. 8. (Color online) Critical glass-form factors f c
q at the

transition for ε = 1.0 (dotted curve), 0.5 (full curve), and 0.0 (dashed
curve) in 2D.

V. TAGGED PARTICLE DYNAMICS

The results of granular MCT for the tagged particle
dynamics has been discussed in II. Here, we will focus on
the derivation of the MCT equations.

The incoherent scattering function φs(q,t) captures the
tagged particle dynamics. This includes the mean-square
displacement δr2(t) = 〈[rs − rs(t)]2〉 which appears as an
expansion coefficient of the incoherent scattering function
φs(q,t) = 1 − q2δr2(t)/6 + O(q4) and the diffusivity 6D∞ =
limt→∞ δr2(t)/t [52].

A. Equation of motion

Following the reasoning that one should account for the
conserved quantities and only for the conserved quantities
explicitly, one would assume that the equation of motion for
a tagged particle should be first order in time. The density ρs

is the only conserved quantity because the momentum of the
tagged particle is all but conserved. It has been shown, though,
that a consistent treatment of the tagged particle dynamics in
fact requires an equation of motion which is second order in
time [66,67], thus effectively reintroducing the tagged particle
momentum as a macroscopic observable.

We follow that reasoning and introduce the incoherent
projector

Ps =
∑

q

∣∣ρs
q

〉〈
ρs

q

∣∣ +
∑

q

∣∣j sL
q

〉〈
j sL

q

∣∣/T . (40)
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FIG. 9. (Color online) Critical glass-form factors f c
q at the

respective transition points for ε = 0.5 in 2D (full curve) and 3D
(dashed curves).

Together with the microscopic state as
q = (ρs

q, j sL
q /

√
T ), it

yields an equation of motion for φs(q,t) formally identical to
Eq. (18):

0 = φ̈s(q,t) + νqφ̇s(q,t) + �s
sφs(q,t)

+�2
s

∫ t

0
dτ ms(q, t − τ )φ̇s(q,τ )

+�2
s

∫ t

0
dτ Ls(q, t − τ )φs(q,τ ), (41)

with φ̇s(q,t = 0) = 0 and φs(q,t = 0) = 1. Moreover, �s
jρ =

〈j sL
q |L+ρs

q〉/
√

T = q
√

T and �s
ρj = q

√
T do not depend on

the coefficient of restitution, as shown in Appendix C 4.
Hence, �2

s := �s
jρ�

s
ρj = q2T is identical to the corresponding

quantity of the molecular fluid. This implies that looking at
the probability density of the tagged particle on macroscopic
time and length scales at very low densities, such that the
memory kernel can be neglected, the microscopically broken
time-reversal symmetry is unobservable.

The memory kernels are given by

ms(q,t) = 〈
F s†

q

∣∣Ũ(t)F s
q

〉/
q2T 2, (42a)

Ls(q,t) = 〈
J s†

q

∣∣Ũ(t)F s
q

〉/
qT , (42b)

with the fluctuating forces F s
q = QsL+j sL

q and F
s†
q =

QsL†
+j sL

q and the fluctuating current J
s†
q = QsL†

+ρs
q .

B. Mode-coupling approximation

We introduce an approximate projection operator to de-
scribe the coupling between the tagged particle and the host
fluid:

P s
2 =

∑
k< p

∣∣ρkρ
s
p

〉〈
ρkρ

s
p

∣∣/〈
ρkρ

s
p

∣∣ρkρ
s
p

〉
. (43)

The corresponding mode-coupling approximation reads

Ũ(t) ≈ P s
2Ũ(t)P s

2

≈ N
∑
k, p

∣∣ρkρ
s
p

〉
φ(k,t)φs(p,t)

〈
ρkρ

s
p

∣∣/Sk. (44)

Within the MCA we find that Ls(q,t) = 0 and

ms[φ,φs](q,t) ≈ 1

q2T 2

∑
k, p

V s
qk pWs

qk pφ(k,t)φs(p,t), (45)

where

Vs
qk p =

√
N/Sk

〈
j sL

q

∣∣L+Qsρkρ
s
p

〉
, (46a)

Ws
qk p =

√
N/Sk

〈
ρkρ

s
p

∣∣QsL+j sL
q

〉
. (46b)

Here,

Vs
qk p = T√

NSk

(q̂ · k)(Sk − 1)δq,k+ p, (47a)

is known from the literature [68–70] and one finds (cf.
Appendix C 6)

Ws
qk p = 1 + ε

2

T√
NSk

(q̂ · k)(Sk − 1)δq,k+ p. (47b)

For the vertices, the loss of detailed balance reappears also for
the tagged particle dynamics.
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Together, Eqs. (47a) and (47b) yield

ms[φ,φs](q,t) ≈ 1 + ε

2

n

q2

∫
dDk

(2π )D

× Sk(q̂ · k)2c2
kφ(k,t)φs(|q − k|, t). (48)

C. Approximate equation of motion

Finally, the equation of motion for the incoherent scattering
function reads

φ̈s(q,t) + νqφ̇s(q,t) + �2
s φs(q,t)

+�2
s

∫ ∞

0
dτms[φ,φs](q, t − τ )φ̇s(q,τ ) = 0, (49)

capturing the coupling of the tagged particle dynamics to the
dynamics of the host fluid as reported in II.

The tagged particle is enslaved to the host fluid on macro-
scopic time scales. Consequently, it also develops persistent
correlations, f s

q = limt→∞ φs(q,t), at the critical density ϕc.
They can be calculated from the equation

f s
q

1 − f s
q

= m[f,f s](q). (50)

A detailed discussion of the solutions of Eqs. (49) and (50)
was given in II.

VI. DISCUSSION

The granular MCT, which includes and extends MCT for
elastic hard spheres, shows that the dynamics of a driven
granular fluid is for one remarkably similar to the equilibrium
dynamics and at the same time fundamentally different. It is
similar in that there is always a glass transition, accompanied
by the two-step relaxation scenario of dynamic correlation
functions and diverging time scales. Because both the order
parameter fq(ε) and especially the critical exponents a(ε) and
b(ε) depend on the coefficient of restitution ε, already slightly
dissipative interactions (ε � 1) destroy the universality of the
dynamics on long time scales, which is observed in elastic sys-
tems with either Newtonian or Brownian dynamics [I, [71,72]].
The change of ε will be detectable even on macroscopic time
scales, in particular by observing the exponent b(ε). This shows
that the combination of dissipative collisions and driving
cannot be mapped to an effective elastic hard sphere system
with an effective temperature Teff conceivably different from
the granular temperature T . Such a mapping would allow us
to find a scaling function such that φ(q,t ; ε) = φ̃(q, t/t0(ε)).

The phase diagram in the (T ,ϕ) plane is still an open
problem. The jamming density is defined for athermal (T = 0)
systems, while the granular glass transition is independent of
temperature but assumes a finite temperature T > 0 to sustain
a fluid phase. It is not obvious if and how they are connected.
Our results suggest that the glass transition density ϕc is
always strictly smaller than the quasistatic jamming density
ϕJ . However, MCT is known to underestimate ϕc. What
happens for densities ϕ � ϕc(ε) larger than the critical density?
At the glass transition, the α-relaxation rate τ−1 diverges.
Consequently, in every compression protocol using a small
but finite compression rate, at some density the compression

rate will be larger than the α-relaxation rate τ−1. From then
on, the evolution of the system will be restricted to a subset of
phase space. The packings, which are reached from that subset
by further compression will also be restricted to a subset of all
packings and that might not even include those of highest den-
sity. Even if the ideal glass transition is destroyed by processes
which are ignored within MCT, the enormous increase of
relaxation times will be prohibitive for all practical purposes.

Apart from the Enskog term, Eqs. (21a) and (21b), the
equations of motion are formally identical in two and three
space dimensions. Hence the glass transition is qualitatively
similar in two and three dimensions, with however different
values for the critical density and the critical exponents.
Compared to D = 3, the glass-form factors fq decay slower in
reciprocal space for D = 2, indicating a stronger localization
in two space dimensions.

In the final equations of motion, Eqs. (34) and (49), the
driving force appears only implicitly. While driving is crucial
to achieve a stationary state, beyond that it does not alter the
relaxation rates �ab, �s

ab and does not enter into the couplings
to densities. Driving contributions would appear in the linear
theory, if the (kinetic) energy, i.e., the granular temperature,
was included as a dynamic field. However, this is hard to justify
in a granular fluid, where kinetic energy is dissipated locally
and hence not a hydrodynamic variable. In terms of the MCT, a
coupling to the currents in P2 [Eq. (25)] would include explicit
driving terms. Such a coupling was considered in the original
mode-coupling approaches [73,74], but its relevance even in
equilibrium fluids remains unclear.

VII. CONCLUSION AND OUTLOOK

We considered randomly driven inelastic smooth hard disks
(in D = 2) and spheres (in D = 3). We systematically derived
equations of motion for the coherent scattering function φ(q,t)
and the incoherent scattering function φs(q,t).

The equations of motion are formally identical to the ones
for elastic hard-sphere or disk fluids in thermal equilibrium
but acquire a nontrivial dependence on the coefficient of
restitution, ε. A transition to a glassy state, indicated by a
nonzero value of the order parameter fq appears through the
bifurcation scenario of mode-coupling theory. Like in thermal
equilibrium, the spatial dimension of the system only enters
via the static structure factors. In both dimensions, the critical
packing fraction increases the more dissipative the particles
are.

The dynamics around the plateau in the scattering functions
is described by power laws with exponents, which are
functions of the coefficient of restitution, ε. Together with
the ε dependence of the order parameter fq , this shows
that the dynamics fundamentally changes upon varying the
coefficient of restitution. In contrast, the difference between
Newtonian and Brownian dynamics in thermal equilibrium can
be absorbed in the redefinition of the microscopic time scale.
Also, a reduced long-wavelength speed of sound is predicted
for granular fluids.

One can hardly expect to observe a glass transition in
a fluid of monodisperse hard spheres because the system
would quickly crystallize. To slow down crystal nucleation,
usually binary mixtures with a small size difference are

022207-9



W. T. KRANZ, M. SPERL, AND A. ZIPPELIUS PHYSICAL REVIEW E 87, 022207 (2013)

used [75]. For fluids in thermal equilibrium, it was found
that a MCT for mixtures does not yield results that differ
drastically from those for the monodisperse idealization [76].
For mixtures of granular particles, a new complication will be
the nonequipartition of energy between the mixture species
[77,78].

So far we only derived equations for the correlation
functions of spontaneous fluctuations. In a fluid in thermal
equilibrium, this immediately entails knowledge about the
corresponding response functions via the fluctuation dissipa-
tion theorem (FDT) [79]. In fact, a lot of the experimental
measurements are concerned with response spectra [80]. The
existence and form of a generalized FDT in driven granular
fluids and more generally in systems far from equilibrium is a
subject of active research [81].

It would certainly be desirable to weaken the assumptions
made on the stationary phase space distribution function
�(�). So far, we ignore correlations between the velocities
of different particles which are known to be present in driven
granular fluids [82]. In light of the fact that the single-particle
velocity distribution function is well represented by a simple
Gaussian, these correlations can presumably be neglected as
a first approximation. More serious are the static correlations,
such as S(q), which are known from simulations to differ from
their elastic counterparts used here. However, we can easily
incorporate data for the simulated structure factors into our
approach; work along these lines is in progress.

The results presented above deal with a specific, highly
idealized system. It is a natural question to ask how robust
these results are qualitatively. No qualitative changes are
expected for a speed-dependent coefficient of restitution ε =
ε(v). Also, models that can be described by an effective
coefficient of restitution [83] like, e.g., the spring-dashpot
model are expected to show a nonequilibrium glass transition.
The inclusion of interparticle friction or the treatment of
different driving forces will likely pose a number of challenges.
Such changes might lead to equations of motion and results
qualitatively different from the ones discussed here.
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APPENDIX A: DOUBLE AVERAGE

The starting point is the coarse grained densities,
ρq(t), ρs

q(t) which are defined as averages of Eqs. (4a) and (5a)
over a microscopic time window. Then the dynamic scattering
functions are introduced as expectation values with respect to
the phase space distribution function

φ̃(q,t ′,t) := N〈ρ−q(t ′)ρq(t)〉/S̃q(t), (A1a)

where S̃q(t) := N〈ρ−q(t)ρq(t)〉 is the static structure factor,
and

φ̃s(q,t ′,t) := 〈
ρs

−q(t ′)ρs
q(t)

〉
. (A1b)

Formally, the scattering functions depend on the trajectory of
the random driving force up to time t , �t . This breaks the
time-translation invariance of the correlation functions.

Following Ref. [84], we assume that the time average
implicit in the coarse grained densities can be replaced by
an ensemble average over all trajectories of the driving force
�t :

φ̃(q, τ, τ + t) � φ(q,t) := 〈〈ρ−q(0)ρq(t)〉�〉/Sq, (A2a)

φ̃s(q, τ, τ + t) � φs(q,t) := 〈〈
ρs

−q(0)ρs
q(t)

〉
�

〉
, (A2b)

and Sq := 〈〈ρ−q(τ )ρq(τ )〉�〉, independent of the time τ . With
this definition, the scattering functions are time-translation
invariant.

APPENDIX B: GRANULAR YVON-BORN-GREEN
RELATION

The Yvon-Born-Green (YBG) relation between the pair and
the triplet correlation functions follows from the identity

∇1g(r12) = (�−1∇12�)g(r12)

+ n

∫
dDr3 g3(r1, r2, r3)(�−1∇13�), (B1)

where �−1 is the pseudo-inverse of the distribution function
[85]. For elastic hard spheres, where �(�) ∝ ∏

i<j (rij − d)
This yields the known relation [50]

∇1g(r12) = r̂12δ(r12 − d)g(r12)

+ n

∫
dDr3 r̂13δ(r13 − d)g3(r1,r2,r3). (B2)

For the inelastic hard spheres, there must be an additional
spatial dependence of the distribution function, depending on
the coefficient of restitution, ε, or otherwise, e.g., the structure
factor Sq would not depend on ε.

Overlapping configurations still have zero probability and,
because of homogeneity, only relative distances play a role.
Therefore, the distribution function will be of the form �(�) ∝∏

i<j (rij − d)ϑε(rij ) with a unknown function ϑε(r) > 0.
With this, we get a granular hard-sphere YBG relation:

∇1g(r12) = r̂12δ(r12 − d)g(r12) + g(r12)∇1 ln ϑε(r12)

+ n

∫
dDr3 r̂13δ(r13 − d)g3(r1,r2,r3)

+ n

∫
dDr3 g3(r1, r2, r3)∇1 ln ϑε(r13).

Unfortunately, virtually nothing is known about the func-
tion ϑε(r). Therefore we use the elastic hard sphere YBG
relation which means we make the nontrivial approximation

g(r12)∇1 ln ϑε(r12) ≈ −n

∫
dDr3g3(r1, r2, r3)∇1 ln ϑε(r13),

(B3)

which may be more general than setting ϑε(r) ≡ 1.
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On the next level, we have

∇1g3(123) = [r̂12δ(r12 − d) + r̂13δ(r13 − d)]g3(123)

+ g3(123)∇1[ln ϑε(r12) + ln ϑε(r13)]

+ n

∫
dDr4 r̂14δ(r14 − d)g4(1234)

+ n

∫
dDr4g4(1234)∇1 ln ϑε(r14),

using the abbreviation i ≡ r i . In Eq. (C21) below, we use the
approximation

g3(123)∇1[ln ϑε(r12) + ln ϑε(r13)]

≈ −n

∫
dDr4g4(1234)∇1 ln ϑε(r14). (B4)

APPENDIX C: MATRIX ELEMENTS

1. Frequency � j j in two dimensions

We have to determine

〈
jL

q

∣∣L+jL
q

〉 = i
N (N − 1)

2

〈
jL

q

∣∣T +
12 jL

q

〉
, (C1)

where all other contributions vanish due to parity. Explicitly,
this reads

〈
jL

q

∣∣L+jL
q

〉 = 1 + ε

2
i〈(q̂ · v1)(q̂ · r̂12)(r̂12 · v12)2

 (−r̂12 · v12)δ(r12 − d)(eiq·r12 − 1)〉, (C2)

where the three particle term vanishes, again, due to parity. In-
troducing the relative velocity v := (v1 − v2)/

√
2, the velocity

averages can be evaluated

〈(q̂ · v1)(r̂12 · v12)2(−r̂12 · v12)〉
=

√
2(q̂ · r̂12)〈(r̂12 · v12)3  (−r̂12 · v12)〉

=
√

2

2πT
(q̂ · r̂12)

∫ ∞

0
dv

∫ 3π/2

π/2
dϕ v4 cos3 ϕe−v2/(2T )

= −2T
√

T/π (q̂ · r̂12). (C3)

The remaining spatial average reads

〈(q̂ · r̂12)2δ(r12 − d)(eiq·r12 − 1)〉

= −dχ

V

∫ 2π

0
dϕ cos2 ϕ(1 − eiqd cos ϕ). (C4)

One finds

1

π

∫ 2π

0
dϕ cos2 ϕeiz cos ϕ = −2

d2J0(z)

dz2
, (C5)

i.e.,

〈(q̂ · r̂12)2δ(r12 − d)(eiq·r12 − 1)〉 = −πndχ

N
[1 + 2J ′′

0 (qd)].

(C6)

Collecting terms, one arrives at Eq. (21a).

2. Frequency �ρ j

The driving contribution vanishes and the free streaming
contribution yields

〈
ρq

∣∣L0j
L
q

〉 = q

N2

〈∑
j,k

(q̂ · vk)2e−iq·rjk

〉
= qT Sq/N. (C7)

The collisional contribution reads

N (N − 1)

2

〈
ρq

∣∣T12j
L
q

〉
= 1 + ε

4
q̂ ·

〈
(r̂12 · v12)2 r̂12  (−r̂12 · v12)

× δ(r12 − d)
(
eiq·r2 − eiq·r1

) ∑
j

e−iq·rj

〉
. (C8)

The velocity integration yields a factor T/2 while the spatial
average can be rewritten as〈

r̂12δ(r12 − d)(eiq·r2 − eiq·r1 )
∑

j

e−iq·rj

〉

= 2〈r̂12δ(r12 − d)e−iq·r12〉
+ 2(N − 2)〈r̂12δ(r12 − d)e−iq·r3eiq·r2〉. (C9)

Application of the YBG relation to the second term yields

N〈r̂12δ(r12 − d)e−iq·r3eiq·r2〉
= − 1

N
(Sq − 1) − 〈r̂12δ(r12 − d)e−iq·r12〉, (C10)

i.e., the second term in Eq. (C10) cancels the first term
in Eq. (C9). Combining the remaining terms we arrive at
Eq. (22b).

3. Vertex Wqk p

Because the vertex is linear in vi , there is no contribution
from the driving iL+

D . Expanding the projector Qc, the vertex
reads

Wqk p = N
〈
ρkρ p

∣∣L+jL
q

〉/
Sp

−N2〈ρkρ p|ρq〉
〈
ρq

∣∣L+jL
q

〉
/SpSq. (C11)

The free streaming contribution to the first term is given by〈
ρkρ p

∣∣L0j
L
q

〉 = qT 〈ρkρ p|ρq〉

= qT

N2
δk+ p,qS

(3)(k, p). (C12)

For the collisional contribution we find

N (N − 1)

2

〈
ρkρ p

∣∣T +
12 jL

q

〉
= i

1 + ε

4N
T q̂ ·

〈∑
j,k

e−ik·rj e−i p·rk r̂12

× δ(r12 − d)(eiq·r2 − eiq·r1 )

〉
. (C13)
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The average on the right-hand side shall be abbreviated as
〈jk|12〉. Then this can be expanded as

〈jk|12〉 = 〈11|12〉 + 〈22|12〉 + 〈12|12〉 + 〈21|12〉
+N (〈13|12〉 + 〈23|12〉 + 〈31|12〉 + 〈32|12〉)
+N〈33|12〉 + N2〈34|12〉. (C14)

Exploiting the symmetries, this can be simplified to

〈jk|12〉 = 2〈11|12〉 + 〈12|12〉 + 2N〈13|12〉
+N〈33|12〉 + N2〈34|12〉. (C15)

Proceeding term by term we first find

〈11|12〉 = 〈ei(k+ p−q)·r1 r̂12δ(r12 − d)(eiq·r12 − 1)〉,
which can be reduced to

〈11|12〉 = δk+ p,q〈r̂12δ(r12 − d)eiq·r12〉
≡ δk+ p,q G(q). (C16)

The second term can be reduced to an equivalent expression

〈12|12〉 = 〈ei(k+ p−q)·r1 r̂12δ(r12 − d)eiq·r12〉
− 〈ei(k+ p−q)·r1 r̂12δ(r12 − d)ei(k−q)·r12〉,

i.e.,

〈12|12〉 = δk+ p,q[G(k) + G( p)]. (C17)

The first three-particle term

〈13|12〉 = 〈ei(k+ p−q)·r2eik·r12ei p·r32 r̂12δ(r12 − d)〉
− 〈ei(k−q)·r1ei p·r3 r̂12δ(r12 − d)〉

requires a little more work. The first term shall be abbreviated
as

〈ei(k+ p−q)·r2eik·r12ei p·r32 r̂12δ(r12 − d)〉 = δk+ p,q H(k, p).

(C18)

The second term can be simplified with the help of the YBG

relation:

〈ei(k−q)·r1ei p·r3 r̂12δ(r12 − d)
〉

= 1

N2
δk+ p,q[i p(Sp − 1) + N G( p)]. (C19)

Similarly, the second three-particle term

〈33|12〉 = 〈ei(k+ p)·r3 r̂12δ(r12 − d)(e−iq·r2 − e−iq·r1 )〉
can be reduced by employing the YBG relation

〈33|12〉 = − 2

N2
δk+ p,q[iq(Sq − 1) + N G(q)]. (C20)

The four-particle term

〈34|12〉 = 〈eik·r3ei p·r4 r̂12δ(r12 − d)(e−iq·r2 − e−iq·r1 )〉
is naturally the most involved. Using the higher-order YBG

relation it reads

〈34|12〉 = − 2

NV 3

∫
dDr2d

Dr3d
Dr4e

−iq·r2eik·r3ei p·r4
∂

∂ r2
g3(r2,r3,r4)

+ 2

NV 3

∫
dDr2d

Dr3d
Dr4e

−iq·r2eik·r3ei p·r4 r̂23δ(r23 − d)g3(r2,r3,r4)

+ 2

NV 3

∫
dDr2d

Dr3d
Dr4e

−iq·r2eik·r3ei p·r4 r̂24δ(r24 − d)g3(r2,r3,r4). (C21)

Partial integration in the first term and the extraction of the momentum conservation constraint yields

〈34|12〉 = − 2iq
NV 2

δk+ p,q

∫
dDr23d

Dr24e
−ik·r23e−i p·r24g3(r23,r24)

+ 2

NV 2
δk+ p,q

∫
dDr23d

Dr24e
−ik·r23e−i p·r24g3(r23,r24)r̂23δ(r23 − d)

+ 2

NV 2
δk+ p,q

∫
dDr23d

Dr24e
−ik·r23e−i p·r24g3(r23,r24)r̂24δ(r24 − d). (C22)

This leaves us with the relatively simple expression

〈34|12〉 = −2iq
N3

δk+ p,q[S(3)(k, p) − Sk − Sp − Sq + 2]

− 2

N
δk+ p,q[H(k, p) + H( p,k)].

Most terms cancel to yield

〈jk|12〉 = 2i

N
δk+ p,q[kSp + pSk − qS(3)(k, p)], (C23)

or

N (N − 1)

2

〈
ρkρ p

∣∣T +
12 jL

q

〉
= −1 + ε

2

T

N2
[(q̂ · k)Sp + (q̂ · p)Sk − qS(3)(k, p)].

(C24)

Inserting Eqs. (C12) and (C24) into Eq. (C11) and applying
the convolution approximation yields Eq. (31b).
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4. Frequency �s
ρ j

The free streaming contribution reads〈
ρs

q

∣∣L0j
sL
q

〉 = q〈(q̂ · vs)
2〉 = qT , (C25)

and the collisional contribution

(N − 1)
〈
ρs

qT +
1s j sL

q

〉 = i
1 + ε

2
N〈(r̂1s · v1s)

2(q̂ · r̂1s)

 (−r̂1s · v1s)δ(r1s − d)〉 = 0 (C26)

vanishes due to symmetry.

5. Vertex V s
qk p

The left incoherent vertex is given as

Vs
qk p = 〈

j sL
q

∣∣L+ρkρ
s
p

〉 − 〈
j sL

q

∣∣L+ρs
q

〉〈
ρs

q |ρkρ
s
p

〉
. (C27)

The triple density correlator,〈
ρs

q

∣∣ρkρ
s
p

〉 = 1

N
δk+ p,qSk, (C28)

is related to the structure factor. Moreover, we have〈
j sL

q

∣∣L+ρkρ
s
p

〉 = k
〈
j sL

q

∣∣jL
k ρs

p

〉 + p
〈
j sL

q

∣∣ρkj
sL
p

〉
(C29)

as only the free streaming operator iL0 applies. The velocity
integration yields a factor of T :〈

j sL
q

∣∣L+ρkρ
s
p

〉 = kT

N

〈
ρs

q

∣∣ρs
kρ

s
p

〉 + pT
〈
ρs

q

∣∣ρkρ
s
p

〉
= 1

N
[(q̂ · k)T + (q̂ · p)Sk]δk+ p,q . (C30)

Collecting terms one arrives at Eq. (47a).

6. Vertex W s
qk p

The incoherent vertex is given as

Ws
qk p = 〈

ρkρ
s
p

∣∣L+j sL
q

〉 − 〈
ρkρ

s
p|ρs

q

〉〈
ρs

q

∣∣L+j sL
q

〉
. (C31)

The free streaming contribution is simple:〈
ρkρ

s
p

∣∣L0j
sL
q

〉 = qT
〈
ρkρ

s
p|ρs

q

〉 = qT

N
δk+ p,qSk. (C32)

For the collisional part one finds with the velocity integra-
tion being already performed:

(N − 1)
〈
ρkρ

s
p

∣∣T +
1s j sL

q

〉
= i

1 + ε

2

T

N

〈∑
j

e−ik·rj e−i( p−q)·rs (q̂ · r1s)δ(r1s − d)

〉

= i
1 + ε

2

T

N
δk+ p−q

〈∑
j

e−ik·rjs (q̂ · r1s)δ(r1s − d)

〉
.

(C33)

The spatial average,〈∑
j

e−ik·rjs (q̂ · r1s)δ(r1s − d)

〉

= 〈e−ik·r1s (q̂ · r1s)δ(r1s − d)〉
+N〈e−ik·r2s (q̂ · r1s)δ(r1s − d)〉, (C34)

can again be evaluated with the help of the YBG relation.
Applying it to the second term cancels the first term and we
get

(N − 1)
〈
ρkρ

s
p

∣∣T +
1s j sL

q

〉 = 1 + ε

2

T

N
δk+ p−q(q̂ · k)(Sk − 1).

(C35)

Collecting terms one arrives at Eq. (47b).

APPENDIX D: DETAILS OF NUMERICS

For the numerical solution of Eqs. (34), (35), and (49),
we used well-established algorithms in 3D [60] and 2D [65].
Reciprocal space is discretized into M3 grid points (M = 100)
up to a cutoff of qd = 40 in 3D, and with M = 125 up a cutoff
of qd = 50 in 2D. The time axis is also discrete with a grid of
N = 2048 points and a step size that is doubled in successive
steps to accommodate for logarithmic time scales. The initial
time step is �t = 10−9t0. The critical density ϕc is located by
interval bisection.
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