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A highly polydisperse granular gas is modeled by a continuous distribution of particle sizes, a, giving rise to
a corresponding continuous temperature profile, T�a�, which we compute approximately, generalizing previous
results for binary or multicomponent mixtures. If the system is driven, it evolves toward a stationary tempera-
ture profile, which is discussed for several driving mechanisms in dependence on the variance of the size
distribution. For a uniform distribution of sizes, the stationary temperature profile is nonuniform with either hot
small particles �constant force driving� or hot large particles �constant velocity or constant energy driving�.
Polydispersity always gives rise to non-Gaussian velocity distributions. Depending on the driving mechanism
the tails can be either overpopulated or underpopulated as compared to the molecular gas. The deviations are
mainly due to small particles. In the case of free cooling the decay rate depends continuously on particle size,
while all partial temperatures decay according to Haff’s law. The analytical results are supported by event
driven simulations for a large, but discrete number of species.
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I. INTRODUCTION

Granular media are an important and popular subject of
current research which is owed partly to the striking phe-
nomena they reveal and partly to their ubiquity in nature and
in industry which makes a good understanding of their prop-
erties indispensable �1–3�. Of special interest are mixtures of
different species, as real granular materials such as sand,
gravel, or seeds are rarely composed of identical particles.

Starting with Jenkins and Mancini �4,5� binary mixtures
and in particular their kinetic temperature and transport prop-
erties received considerable interest �6–14�. These studies
confirmed that equipartition of energy is indeed violated in
granular binary mixtures, an observation that was first made
in experiments by Losert et al. �15�. Polydisperse granular
mixtures, i.e., mixtures composed of more than two types of
particles were studied much less �16–21� although they are
closer to realistic systems. In particular, Dahl et al. �17� and
Zhi-Yuan et al. �21� simulated mixtures of particles with a
distribution of sizes, and Lambiotte et al. �19� discuss mix-
tures of Maxwell molecules with varying coefficients of res-
titution.

Out of the many fascinating phenomena inherent to
granular mixtures and the observables that are necessary to
understand them, we will focus on the partitioning of energy
and how it evolves in time, both in the homogeneous cooling
state �HCS� and in homogeneously driven systems. Even
though, in this paper we will first develop the machinery to
deal with an arbitrary number, X, of species, we will even-
tually go one step further and consider highly polydisperse
systems, where no two particles are alike but instead possess
properties that are drawn from continuous probability distri-
butions.

In the following three sections we give a short introduc-
tion to the model and methods we use. In Sec. V we inves-
tigate the temperature in a highly polydisperse system, char-
acterized by a continuous distribution of particle sizes. We

finish with a brief conclusion and delegate all technical ma-
terial to the appendices.

II. MODEL AND OBSERVABLES

In order to model a polydisperse granular gas, we con-
sider mixtures of X different species of smooth inelastic hard
spheres. Each species �=1,2 , . . . ,X consists of N�→� iden-
tical particles, such that the concentrations x�ªN� /N �N
=��N�� as well as the density n=N /V remain finite as N�

→�. Collisions between particles are assumed to be instan-
taneous and the particles move freely between collisions. Be-
cause of the vanishing collision time collisions of more than
two particles can be neglected, i.e., the dynamics is deter-
mined by two particle collisions. The inelasticity is described
by a velocity independent coefficient of normal restitution,
���� �0,1�, which may depend on the pair of species � ,�
=1,2 , . . . ,X that the colliding particles belong to:

n̂ · v12� = − ��� n̂ · v12, �1�

where v12=v1−v2 is the relative velocity of the colliding
particles at contact before the collision and v12� the corre-
sponding quantity after the collision. The unit vector n̂ points
from the center of particle 1 to the center of particle 2. Apart
from the mutual coefficient of restitution ���, the species
may also differ in mass m� and in size �radius� a�.

The collision law �Eq. �1�� together with conservation of
momentum determines the postcollisional velocities v1� and
v2� uniquely in terms of the precollisional ones �v1 ,v2�:

v1� = v1 −
m2

m1 + m2
�1 + �12��n̂ · v12�n̂ ,

v2� = v2 +
m1

m1 + m2
�1 + �12��n̂ · v12�n̂ . �2�

As we consider smooth spheres the tangential component of
the relative velocity �v12� n̂� remains unaffected.
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Due to the inelasticity, the particles suffer an energy loss
during collision, i.e., the gas will cool down. To compensate
for this energy loss, one can provide the system with external
energy. We will restrict ourselves to volume driving �22�:
with a given frequency fdr random kicks

pi → pi + pdr�i�t� �3�

are applied to all particles individually �pi�mivi�. The
strength of the kicks is controlled by pdr while the compo-
nents of �i are drawn form a white noise source: �i

a=0 and
�i

a�t�� j
b�t��=�ij�

ab��t− t��. The time between two driving
events is taken to be small compared to the time scale on
which the gas would cool down without energy supply.

When considering X-component mixtures, the driving
strength pdr may in general be a function of the particle spe-
cies pdr� pdr

� . There are several experimental methods �both
in D=2 and D=3� that one can hope to describe approxi-
mately by volume driving: shaking on a rough plate �23�,
electrostatic �24,25�, or magnetic �25,26� excitation, fluidiza-
tion by air �27,28� or water �29�. As it is not obvious how to
best describe the driving of all these experiments theoreti-
cally, we propose the following three simple mechanisms:

�i� force controlled driving, assuming that all particles ex-
perience the same force �pdr

� � pdr�,
�ii� velocity controlled driving, assuming that all particles

get velocity kicks of the same magnitude �pdr
� 	m�� and

�iii� energy controlled driving, supplying every species on
average with the same energy �pdr

� 	m�
1/2�.

The first two mechanisms combined with an additional
viscous drag force 	
v are also discussed in the context of
binary mixtures by Pagnani et al. �10�. Our hope is that the
results discussed below may help to clarify the experimental
conditions.

The basic quantity of interest is the one-particle velocity
distribution, f��v�dDv, of species � which is related to
the one-particle distribution f��r ,v�dDrdDv by f��v�
=�f��r ,v�dDr. As an example, consider species that differ in
mass, so that the one-particle velocity distribution is explic-
itly given by

f��v�dDv = �
i

N

�mi,m�
���v − vi�	dDv ,

where the angular brackets � · 	 denote the average over the
N-particle distribution function. It is normalized such that


 dDvf��v� = N� and �
�

 dDvf��v� = N .

The partial granular temperature for species � in D space
dimensions is defined by

D

2
T� ª

1

N�
�

i

m�

2
�vi

2	�mi,m�
=

 dDvf��v�

m�v2

2


 dDvf��v�
. �4�

The mean temperature, T̄=��x�T�, is then just given by the
mean kinetic energy

D

2
T̄ =

1

N
�
�

 dDvf��v�

m�v2

2
=

1

N
�

i

mi

2
�vi

2	 .

The above definitions are easily generalized to other species
characteristics, e.g., different size or different coefficients of
restitution: The indicator function, �mi,m�

, just has to be re-
placed by the corresponding one.

Our main emphasis in this paper are particles whose prop-
erties depend on a continuous variable ��R that follows a
prescribed probability distribution d����, i.e.,

�
�

N�

N
→
 d�x��� =
 d���� .

The temperature becomes a continuous function T�→T���
whose mean and variance is given by

T̄ =
 T���d����, �T = T2 − T̄2

with T2 =
 T2���d���� . �5�

In our example of a distribution of masses, �=m the one-
particle velocity distribution, f�m ,v�d3vdm, is defined by

f�m,v� = �
i

n

��mi − m����v − vi�	 .

III. ANALYTICAL THEORY

The time evolution of the temperatures is computed with
the help of the pseudo Liouville operator formalism. For de-
tails see, e.g., Refs. �30,31�. In this framework the time evo-
lution of an observable A is given by the equation

d

dt
�A	 = �iLA	 ,

where iL denotes the pseudo-Liouville operator.
The pseudo-Liouville operator for the driven hard sphere

gas consists of three terms. The term iL0 describes free
streaming which does not affect the temperature, the term
iLH accounts for driving and iLI for interactions between
particles. In a gas consisting of X different species one ob-
tains

iL = iL0 + iLH + �
�=1

X

�
�=1

�

iL��,

where iL�� accounts for interactions between particles of
species � with particles of species �. For the evolution of the
temperature of a particular species, only interactions with
participation of that species play a role; collisions between
particles of other species do not have a direct influence.
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Given a discrete number, X, of different species, the tempera-
ture of species �, Eq. �4�, develops in the following way

D

2

d

dt
T� = �iLHĒkin���	 + �

�=1

X

�iL��Ēkin���	 . �6a�

Given a continuous distribution d���� of a parameter �, one
obtains

D

2

d

dt
T��� = �iLHĒkin���	 +
 �iL��Ēkin���	d���� .

�6b�

At this point we would like to stress that the above equations
hold subject to arbitrary initial conditions T��t=0�. The a
priori assumption of a �quasi�stationary state that is required
for some of the hydrodynamic theories is not needed here.

For a hard core potential the interaction terms iL�� sepa-
rate into a sum of two particle interaction operators iL��

= 1
2�k,liT��

�kl� with one particle belonging to species �, the
other one to species �. For the operator iT��

�kl� one obtains

iT��
�kl�

ª − �vkl · n̂��− vkl · n̂���rkl − ak − al��b��
�kl� − 1� ,

where b��
�kl� is the operator replacing the particles’ velocities

before collision by their values afterwards according to Eq.
�2�.

When calculating the phase space average, one has to take
into account the excluded volume effect which arises due to
the fact that particles cannot overlap. Consequently, the
phase space element in D dimensions is given by

d� = �
i�j

�rij − ai − aj��
k=1

N1

dDrkd
Dvk. . .�

�=1

NX

dDr�dDv�

with rij the distance between particles i an j.
We assume that the particles are uniformly distributed in

space that the species are well mixed and that velocity cor-
relations between different particles can be neglected �mo-
lecular chaos assumption�. Under these premises the
N-particle distribution function fN��ri , �vi , t� factorizes into
a product of N single particle distribution functions f�r ,v , t�.
In a monodisperse system, the single particle distribution
function can be written in rescaled form

f�r,v,t� 	
n

T�t�D/2 f̃�v/�T�t��

both in the homogeneous cooling state as well as in the sta-
tionary state of a driven system �32�.

Contrary to elastic gases, a Gaussian distribution is only
an approximate solution in the inelastic case. Deviations
have been studied extensively for driven and undriven mono-
disperse systems. Investigations have shown that while a
Gaussian approximation is quite good in the range of typical
velocities, high velocities are overrepresented in granular
gases �32–36�. In Ref. �6� qualitatively similar deviations
have been found for freely cooling binary mixtures. The cor-
rections have, however, only little influence on the tempera-
ture and the cooling rate �32�. Thus, we make a Gaussian

ansatz for the velocity distribution of a single species � with
temperature T�. The N-particle distribution for a mixture
with X components then follows:

fN��ri,�vi,t� 	 �
i=1

N1

e−m1vi
2/2T1�t�. . .�

j=1

NX

e−mXvj
2/2TX�t�. �7�

In undriven systems, the HCS is maintained only for a
certain time until velocity correlations develop and clusters
form because of the system’s instability against density fluc-
tuations �37–39�. In inelastic mixtures cluster formation is
additionally accompanied by the onset of segregation
�12,40�. Therefore our results will in this case be limited to
the initial development.

Using the distribution function, Eq. �7�, evaluation of the

term �iL��Ēkin���	 yields �cf. Appendix A�

�iL��Ēkin���	 = − 2x����G���T�m� + T�m�

2m�

��A��

m�

T� −
B��

m�

�T� − T��� �8�

with the reduced mass ���ªm�m� / �m�+m��. The other
constants are given by

A�� ª
1 − ���

2

4
,

B�� =
���

4m�

�1 + ����2

and

G�� ª 4�a� + a��n� �

m�

��� for D = 2,

G�� ª 8�a� + a��2n� �

m�

��� for D = 3

where ��� is the value of the pair correlation function g���r�
at contact. In the following, we will use the approximation
���=1 which is well justified for dilute systems.

The terms in Eq. �8� have a direct physical interpretation:
The factor before the square brackets defines an effective
collision frequency ��� of particles coming from possibly
different species with different temperatures. The first term
inside the brackets accounts for the dissipation in collisions
between � and � particles while the second term describes
the heat flux between species with different temperatures
which tends to equalize the two temperatures. This term is
the only one present in mixtures of elastically colliding par-
ticles, where it ensures equipartition. The difference to the
elastic cases consists in the dissipative terms. As the cooling
rates 	G��A�� are in general different for each species and
are completely independent from the rate of energy exchange
	G��B�� they constantly drive the system away from equi-
partition. The resulting quasistationary state is then no longer
characterized by equipartition but by equal cooling rates

Ṫ� /T�= Ṫ� /T� �6�. A related interpretation has been given

PARTITIONING OF ENERGY IN HIGHLY POLYDISPERSE… PHYSICAL REVIEW E 80, 041303 �2009�

041303-3



before by Alam and Luding �13�. Moreover it is also appar-
ent that driving the system will in general not be sufficient to
restore equipartition as was first shown by Barrat and Trizac
�8�. For the special case of an undriven system that already
reached its quasistationary state, Eq. �6a� is equivalent to Eq.
�2.4� of Ref. �20�a��.

The driving power H� which was formally written as

H�= �iLHĒkin���	 in Eqs. �6a� and �6b� can be more easily
calculated directly form the definition �Eq. �3��:

H� = fdr�pdr
� �2/2m�.

In particular we get for �i� force controlled driving H�
fc

	1 /m�, �ii� velocity controlled driving H�
vc	m�, and �iii�

constant energy input H�
ec independent of m�.

IV. SIMULATIONS

In order to test our analytical theory we performed
complementary computer simulations based on an event
driven �ED� algorithm �41�. Although our code can easily
handle up to 106 particles, we usually found 104 particles per
species sufficient for the measurements reported here. Be-
cause of the extremely low densities used in this paper, we
hardly ever need to take care of the inelastic collapse occur-
ring in ED simulations. If necessary we use the method of
Ref. �42� to avoid inelastic collapse.

For monodisperse systems, the minimal cluster size Lc
can be derived from a hydrodynamic stability analysis
�38,43�. To keep our systems from clustering, we chose a
system size L�Lc /6. Although Lc will certainly be some-
what different for polydisperse systems, we found no indica-
tions for clustering or segregation in our simulations.

As mentioned above, our simulations include volume
driven systems. In this context it is necessary that the simu-
lation process takes the conservation of momentum into ac-
count. To do so, a driving event always concerns two par-
ticles at the same time �44�. One of these particles, say
particle 1, is chosen at random. The neighborhood of this
particle is examined to find the particle, i, closest to the first
one. Particles 1 and i are then kicked at the same time t.
While a momentum increment pdr��t� �see Eq. �3�� is added
to particle 1, it is subtracted from particle i, i.e.,

p1 → p1 + pdr�

pi → pi − pdr� .

In that way momentum is conserved on length scales � of a
mean particle separation, i.e., �	n−1/D.

The simulations were performed in two steps. Initially the
particles were placed on a grid and random velocities drawn
from a Gaussian distribution were assigned to the particles.
In the first half of the simulation, all coefficients of restitu-
tion were set to unity and the elastic mixture was simulated
for about 120 collisions per particle to generate a well-mixed
state. In the next step the desired inelasticities were switched
on and the temperatures were recorded until reliable esti-
mates for the stationary values of the observables could be

obtained. For the driven systems we chose the driving fre-
quency fdr to be approximately the same as the collision
frequency at the desired stationary temperature T�. As a
compromise between computational efficiency and the desire
to reduce temperature fluctuations due to rare but strong
driving events this choice of driving frequency was also
found satisfactory by Bizon et al. �45�

V. HIGHLY POLYDISPERSE SYSTEMS

Many real granular systems are highly polydisperse with
no single particle being identical in shape and size to another
one. To account for a high degree of polydispersity we gen-
eralize the considerations for polydisperse mixtures to mix-
tures containing “infinitely” many species. In principle, a
variety of scenarios can be thought of and treated within our
analytical approach. Here, we will restrict ourselves to the
relatively simple case where the particles’ radius is uniformly
distributed in a range �R1 ,R2�; the particles all have the same
mass density � and all restitution coefficients are equal ���

��. We furthermore choose units such that �=1.
The following questions are of particular interest. Is there

a stationary temperature profile, T�a�, if the system is driven?
If so, how does this function reflect the properties of the
distribution of radii? How does the forcing mechanism affect
the stationary temperature profile? How does the system cool
freely if undriven?

Combining Eqs. �6b� and �8� leads to the following inte-
grodifferential equation for the temperature of species with
radius a:

D

2

d

dt
T�a� = H�a� + F�T��a� �9�

where the nonlinear integral operator F is given �in D=3� by

F�T��a� ª
n�6

R2 − R1



R1

R2

dr�ra
r3�a + r�2

r3 + a3 �T�a�
a3 +

T�r�
r3

����2 − 1�T�a� + �1 + ��2 a3

a3 + r3 �T�r� − T�a��� .

When the system is driven constantly in time, we expect a
stationary temperature profile T��a�=T�a , t→��, to develop.
If this is correct, it should be given as the asymptotic solu-
tion of Eq. �9� with the left hand side set to zero

F�T���a� = − H�a� . �10�

In general T� depends not only on a but also on the two
parameters R1 ,R2 of the distribution of radii. By scaling all
radii with R1, one observes that �up to a scale factor� T�

depends only on the ratios a�=a /R1 and R=R2 /R1, but not
on the absolute values. Alternatively, we choose a� and the
relative width of the distribution �=2�R2−R1� / �R2+R1� as
independent variables: T�=T��a� ,��.

We solved the above nonlinear integral Eq. �10� numeri-
cally by applying Banach’s fixed point iteration �for details
see Appendix B�. We always found a solution, confirming
that a stationary temperature profile is indeed reached for
asymptotically long times.
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Independently, we performed event driven simulations
and measured all the partial temperatures T�a , t�. The amount
of simulation time needed for sufficiently good statistics
quickly rises with the number of species. To this end, we
checked if a highly polydisperse system can be approximated
by a polydisperse mixture with many species such that there
is still a considerable number of particles for each species.
Considering Eq. �6a� for increasing numbers of species we
found that the temperatures considered in this paper rapidly
converge. Figure 1�a� shows how mixtures of, respectively,
three and five species compare to the result for a continuous
distribution. From these results we conclude that considering
X=20–30 species for the simulations should yield results
practically indistinguishable from the highly polydisperse
case.

In Fig. 2 we show the stationary temperature T��a� ,�� as
a function of particle radius a� for the three driving mecha-
nisms proposed in Sec. II. The rough trends can be under-
stood from the following qualitative arguments. Force con-
trolled driving Hfc�a��	1 /m�a��	a�−3 is dominant for small
particles so that one expects the partial temperatures,

T��a� ,��, to decrease with increasing size a�. This is indeed
born out by the solution of the integral Eq. �10� and sup-
ported by simulations, which are seen to agree well with the
theoretical result. Velocity controlled driving Hvc	m�a�� is
dominant for large particles so that we expect the partial
temperatures to increase with increasing size of the particles,
as is indeed observed in Fig. 2. Finally, for the energy con-
trolled mechanism, Hec�a���H is independent of the particle
size, nevertheless T��a� ,�� depends weakly on a�. One has
to keep in mind that all the species interact and that this will
lead to nontrivial conditions of stationarity as in the binary
case. These effects are responsible for the precise functional
form of the temperature profile which goes beyond the
simple rough trend for all three driving mechanisms. The
same trends for force controlled versus velocity controlled
driving have been found by Pagnani et al. �10� in the case of
binary mixtures.

Abate and Durian �28� discuss several systems that, al-
though they are comprised of only two to five particles come
close to our definition of highly polydisperse systems in that
no two particles are alike. Two spheres of different sizes
show a marked increase in the temperature ratio with in-
creasing size ratio. This would roughly correspond to our
results for velocity controlled driving but the authors of Ref.
�28� observed a complicated two particle interaction. More-
over, they considered a system with five different spheres of
the same size but different densities. Based on the results
from binary mixtures one infers that the effects of different
masses is much stronger than that of different sizes. If this
reasoning is valid the weak dependence of the temperature
on the mass would correspond to energy controlled driving
in the present paper.

Within our approximation scheme, the partial tempera-
tures �i.e., the temperature profile�, T��a��, determine the
one-particle velocity distribution according to

f�a,v� =
N

R2 − R1
� m�a�

2�T��a��D/2
e−m�a�v2/2T��a�.

The total velocity distribution, f�v�d3v is thus given by

f�v� = 

R1

R2

daf�a,v� . �11�

This function is in general not Gaussian, not even for an
elastic molecular gas with many different species. In Fig. 3
we show the total velocity distribution as given by Eq. �11�.
The elastic system �dashed dotted� is compared to the inelas-
tic gas with different driving mechanisms. In comparison to
the molecular gas the tails of the velocity distribution can
either be overpopulated, as observed for force controlled
driving �solid line�, or underpopulated for energy �long
dashed�, or velocity controlled �short dashed� driving.

To clearly see the difference to the elastic case, we plot in
Fig. 4 the velocity distribution relative to the elastic gas. We
furthermore separate the particles into two halves, one with
the smaller and one with the larger particles. The strongest
deviations are clearly in the tails and solely due to the small
particles. The velocity distribution of the large particles has
almost the same form as in the elastic gas, except for very
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FIG. 1. �a� The stationary temperatures �Eqs. �6a� and �6b�� in a
three component �open disks� and five component �filled disks�
mixtures compared to those of a highly polydisperse mixture for
energy controlled driving Hec=10−3 at density n=5�10−4 and co-
efficient of restitution �=0.9. �b� Inverse cooling time �0 in a two-
dimensional system for a uniform size distribution of width R=3,
coefficient of restitution �=0.9 and density n=2�10−4. The sym-
bols denote simulation results for X=30 species each with 104 par-
ticles, while the solid line is the solution of Eq. �12�.
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FIG. 2. �Color online� The stationary temperature in a three-
dimensional driven system for a size distribution with R2=3R1, a
coefficient of restitution �=0.9 at a density n=2�10−4. Force con-
trolled driving Hfc�a�=1.875�10−3 /m�a� �solid, red�, energy con-
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species with 104 particles each was used.
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small velocities. Force and energy controlled driving are al-
most mirror images of each other—even for the detailed
structures at small velocities.

How does the temperature profile, T��a� ,��, reflect the
prescribed distribution of radii? The latter is characterized by
a single parameter, the relative width �, which can take val-

ues 0���2. In Fig. 5 we show the mean temperature T̄ and

the temperature variance �T2
ªT2− T̄2 �see Eq. �5�� as a

function of �. In Fig. 5�a� we show the mean temperature

T̄��� / T̄�1�, scaled such that they coincide at �=1. Surpris-
ingly the dependence is nonmomotonic for different driving

mechanisms: whereas T̄��� increases with � for force and

velocity controlled driving, T̄��� decreases with � for energy
controlled driving. The strongest variation is observed for
force controlled driving. The corresponding variance of the
temperature profile �Fig. 5�b�� increases trivially with �. The
variance for velocity controlled driving is almost an order of
magnitude larger than for the other two driving mechanisms.

We next consider the freely cooling case �H�a��0�
�19,20�. We expect Haff’s law �46� to hold also for T�r , t�
and hence make the ansatz

T�a,t� 	 �0�a�−2t−2

for large times. This leads to an integral equation for the
inverse cooling time �0

− D�0
−2�a� = F��0

−2��a� . �12�

Similarly to T�, the decay rate �0 depends only on a�

=a /R1 and R=R2 /R1, or alternatively �, but not on the ab-
solute values: �0=�0�a� ,��. The above integral equation is
solved numerically by subsequently applying Banach’s fixed
point iteration and Newton’s method �for details see Appen-
dix B�. To extract �0�a� ,�� from the simulations, we per-
formed simulations with X=30 species, measured all partial
temperatures and fitted them to Haff’s law. The resulting
decay rates are plotted in Fig. 1�b�. The rate is seen to be a
monotonically decreasing function of a�, however the depen-
dence is weak. Since the coefficient of restitution is the same
for all particles, this is a pure size effect, implying that
smaller particles relax faster than larger ones. The simulation
data are seen to agree well with the theoretical results, but
show a considerable scatter. This is most likely due to the
difficulty in fitting the data to Haff’s law, given the uncer-
tainty in time scale, when the asymptotic decay applies.

VI. CONCLUSION

We examined the partitioning of energy in highly polydis-
perse mixtures of smooth hard spheres. The properties of the
particles, such as mass, radius. or coefficient of restitution,
are chosen from a continuous distribution giving rise to a
corresponding continuous temperature profile. The latter has
been computed approximately, generalizing previous ap-
proaches of mixtures with several species. The analytical
theory leads to a nonlinear integrodifferential equation for
the time-dependent temperature profile, which has been
solved numerically.

Our results are supported by event driven simulations for
mixtures with X=20–30 species. The good agreement be-
tween ED simulations and the analytical theory indicates that
the assumptions of homogeneity and molecular chaos that
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UECKER et al. PHYSICAL REVIEW E 80, 041303 �2009�

041303-6



are fundamental to the theory are indeed observed in the
simulated system. The direct simulation Monte Carlo �DSMC�
method �47�, otherwise well suited for dilute �granular� gases
�see, e.g., �48–51��, would not have been able to show this as
it ensures both homogeneity and molecular chaos by con-
struction.

As a specific example we have studied a uniform size
distribution in detail. We showed that a highly polydisperse
mixture still obeys Haff’s law during free cooling. The dis-
tribution of sizes gives rise to a nonuniform distribution of
cooling rates, such that the smaller particles are cooling
faster.

A driven system relaxes to a stationary temperature profile
which is in general nonuniform. Depending on the driving
mechanism, its weight can be predominantly at small or large
particles. If the particles are driven by a constant force, then
the smaller particles are hotter. If the driving process sup-
plies either a constant energy or velocity, then the larger
particles have a higher temperature. The temperature profile
reflects the distribution of radii, characterized by the relative
width �. The variance of the temperature increases with �,
as one would expect, whereas the mean temperature can ei-
ther increase �constant force driving� or decrease with �
�constant energy supply�.

This strong dependence on the driving mechanism is also
observed in the velocity distributions. For a polydisperse
system, these are in general weighted sums of all partial
distributions and hence in general not Gaussian, even if the
partial distributions are Gaussian like in an elastic gas. The
velocity distribution in an inelastic, driven gas can have ei-

ther overpopulated or underpopulated tails, as compared to
the molecular gas. Furthermore, the effects are dominated by
the small particles.
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APPENDIX A: CALCULATION OF THE MIXED TERM

We will only show the calculations for the mixed term
�iL12T1	t for D=2. The calculations in D=3 are very similar
although slightly longer and the single species terms have
already been calculated �see, e.g., �31��. The first steps are
straight forward

�iL12T1	 =� 1

2�
i,j

iT12
�ij�T1� =

1

2N1
�
i,j
�iT12

�ij�m1

2 �
k=1

N1

vk
2�

=
N1N2

N1
�iT12

�12�m1

2
v1

2�
where we used the molecular chaos assumption to reduce
the average over all possible pairs of colliding spheres to a
sum of 2N1N2 times the average result of a single colliding
pair.

Now we insert two partitions of unity ��d2R1d2R2��R1
−r1���R2−r2��, i.e.,

�iL12T1	 = N2


 d�
 d2R1d2R2��R1 − r1���R2 − r2�fN��vi,t�iT12
�12�m1

2
v1

2


 d�fN��vi,t�

identifying the pair-correlation function g12�R12� /V2= ���R1
−r1���R2−r2�	t in this expression yields

�iL12T1	

=
N2

V2


 d2R1d2R2
 � jd
2v jg12�R12�fN��vi,t�iT12

�12�m1

2
v1

2


 � j
d2v j fN��vi,t�

.

Substituting R12=R1−R2 for R1 the other spatial integration
is trivial as are all the velocity integrals in the denominator

and those for j�2 in the numerator

�iL12T1	 = − x2n� m1

2�T1�t��
�� m2

2�T2�t��
 d2R12
 d2v1d2v2 exp�−
mv1

2

2T1
�

�exp�−
mv1

2

2T1
�g12�R12�iT12

�12�m1

2
v1

2.

Writing R12 in polar coordinates such that R̂12·v12
=v12 cos �, the radial integration is simply the application of
the �-function in T12

�12� and the step function constraints the
angular integration.
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�iL12T1	 = Nm1

2



�/2

3�/2

d�
 d2v1d2v2v12 cos �

�exp�−
m1v1

2

2T1�t��exp�−
m2v2

2

2T2�t���b12
�12� − 1�v1

2

where

N = x2n�a1 + a2��12� m1

2�T1�t��� m2

2�T2�t�� .

According to the collision rules, the application of b12
�12�

yields

�b12
�12� − 1�v1

2 = −
2�

m1
�1 + �12��n̂ · v12��n̂ · v1�

+
�2

m1
2 �1 + �12�2�n̂ · v12�2

where ���12 is the reduced mass. Introducing the new av-
erage

�A	2 ª 

�/2

3�/2

d�
 d2v1d2v2v12 cos �A exp�−
m1v1

2

2T1�t��
�exp�−

m2v2
2

2T2�t��
what we have to calculate is

�iL12T1	 = − �N�1 + �12���n̂ · v12��n̂ · v1�	2

+
�2

2m1
N�1 + �12�2��n̂ · v12�2	2. �A1�

Let’s consider the first term in Eq. �A1�. Substituting v
�v12 for v2 and writing v1 in polar coordinates such that
v1 ·v=v1v cos � one gets

��v12 · n̂��v1 · n̂�	2 =
 d2v

�/2

3�/2

d�

0

�

dv1

0

2�

d�v2v1
2 cos2 � cos�� − ��exp�−

1

2

m2T1�t� + m1T2�t�
T1�t�T2�t�

v1
2�

�exp�−
m2v2

2T2�t��exp�m2v1v
T2�t�

cos �� .

Invoking the addition theorem for cos��−�� the integration over � becomes trivial and the integration over � defines the
associated Bessel function I1�x�.

��v12 · n̂��v1 · n̂�	2 = −
8�

3

 d2v


0

�

dv1v
2v1

2I1�m2vv1/T2�t��exp�−
1

2

m2T1�t� + m1T2�t�
T1�t�T2�t�

v1
2�exp�−

m2v2

2T2�t�� .

Integrals of the form �dxxn+1In��x�exp�−�x2� have closed solutions such that we get

��v12 · n̂��v1 · n̂�	2 = −
8�

3

m2

T2�t�� T1�t�T2�t�
m2T1�t� + m1T2�t��2
 d2vv3 exp�−

m1m2

2

v2

m2T1�t� + m1T2�t�� .

We are left with a pair of Gaussian integrals. Calculating the second term in Eq. �A1� involves essentially the same steps as
shown above.

APPENDIX B: SOLVING THE INTEGRAL EQUATIONS

To be able to apply Banach’s fix point iteration, we rearrange Eqs. �10� and �12� and define operators

A1�T��a� ª

− C

R1

R2 r3

r3 + a3 �a + r�2�T�a�
a3 +

T�r�
r3 �1 + ��2 a3

a3 + r3T�r�dr − H�a�

C

R1

R2 r3

r3 + a3 �a + r�2�T�a�
a3 +

T�r�
r3 ���2 − 1� − �1 + ��2 a3

a3 + r3�dr

and
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A2��0
−2��a� ª

− C

R1

R2 r3

r3 + a3 �a + r�2��0
−2�a�
a3 +

�0
−2�r�
r3 �1 + ��2 a3

a3 + r3�−2�r�dr − 2�0
−2�a�

C

R1

R2 r3

r3 + a3 �a + r�2��0
−2�a�
a3 +

�0
−2�r�
r3 ���2 − 1� − �1 + ��2 a3

a3 + r3�dr

with C=n�6 / �R2−R1�. Now the solutions of the integral equations are the fix points of A1 and A2, which we try to determine
by iteration. This method worked well in the case of Eq. �10�, for �0, however, convergence was not fully satisfactory.

That is why we combined it with Newtons method. We define the function G whose root is to be determined by

G�f��a� = 2f�a� + C

R1

R2 r3

r3 + a3 �a + r�2� f�a�
a3 +

f�r�
r3 ���2 − 1�f�a� + �1 + ��2 a3

a3 + r3 �f�r� − f�a���dr .

and calculate its functional derivative. After discretization of the integrals we obtain a function G :RM →RM on which we can
apply Newton’s method. Newton’s method requiring a sufficiently good starting approximation, we chose as such the result of
Banach’s fixpoint iteration after about 300 iterations.
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