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Agitated granular media have a rich rheology: they exhibit Newtonian behavior at low shear rate and
density, develop a yield stress at high density, and cross over to Bagnoldian shear thickening when sheared
rapidly—making it challenging to encompass them in one theoretical framework. We measure the rheology
of air-fluidized glass particles, spanning 5 orders of magnitude in shear rate. By comparing fluidization-
induced to Brownian agitation, we show that all rheological regimes can be delineated by two
dimensionless numbers—the Péclet number, Pe, and the ratio of shear-to-fluidization power, Π—and
propose a constitutive relation that captures all flow behaviors, qualitatively and quantitatively, in one
unified framework.
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Systems out of equilibrium, which evolve or remain in a
steady state through energy exchange with their environ-
ment, are widespread yet poorly understood from a
fundamental point of view. Such systems can be found
at many length scales: from biological matter to colloidal
suspensions and emulsions up to traffic flow or even star-
forming regions. In granular media, constant agitation
counteracts the particles’ dissipative nature, transforming
static granular solids into dynamic granular fluids with a
nonzero granular temperature, T, i.e., a finite mean kinetic
energy per particle [1,2]. From industrial reactors [3,4] to
geophysical flows [5–8], granular media under constant
agitation are widespread but continue to be challenging to
understand and describe theoretically.
Measuring the rheology of agitated granular media has

yielded seemingly contradictory results. Considering a wide
range of geometries and agitation mechanisms (air-fluidized
[7–10], suspended in a liquid flow [11–14], tapped or
vibrated [15–18], acoustically fluidized [6,19,20], combined
air flow and vibrations [4]), some studies report Newtonian
rheology [21–23] while others find shear thinning [24–26],
and yet others shear thickening (Bagnoldian) rheology
[10,18,27]—or crossovers between these behaviors
[9,14–16,19,28–31]. Yet, a succinct and comprehensive
constitutive equation for agitated granular fluids, describing
the stress tensor, Σ, as a function of shear rate, γ̇, remains
elusive.

In this Letter, we demonstrate that the rheology of agitated
granular media actually encompasses all three regimes:
Newtonian, shear thinning, and Bagnoldian shear thickening.
By comparing fluidization-induced agitation to Brownian
agitation, we extend arguments pertaining to colloidal sus-
pensions to physically explain each regime.We show that the
regime transitions are controlled by two dimensionless
numbers: the Péclet number, Pe, and the ratio of shear-to-
fluidization power, Π. Finally, we show that the granular
integration through transient (GITT) [32,33]—developed
from mode-coupling theory (MCT), a first-principles-based
theory for glassy dynamics [34,35]—captures in one theo-
retical framework the complex rheology of agitated granu-
lar media.
Experiments—We measure the steady-state rheology

of air-fluidized glass particles (glass bulk density ρp ¼
2.5 gcm3, diameter d∈ ½150–200� μm, sample mass M ¼
170 g, Geldart group B [1]), and vary the fluidization gas
flow velocity, u. The single fluidization control parameter
is u: the bed expands with increasing u, which lowers the
global packing fraction, φ, (see Fig. 1 inset) and, at the
same time, increases agitation. While φðuÞ characterizes
the fluidized bed’s density, its agitation can be characterized
by the injected power density, ΠfðuÞ ≔ ρpφug (g gravita-
tional acceleration). In the unsheared bed, Stokes numbers
St ≫ 1 [36], such that particles are not overdamped by the
surrounding fluid (air), but driven by their inertia, forming a
non-Brownian dry suspension.
The rheology of our air-fluidized granular bed ismeasured

in a wide gap Taylor-Couette shear cell (Anton Paar MCR-
102, coaxial cylinders; geometry details inAppendixA). The
torque,M, for a fixed inner cylinder’s angular velocity,Ω, is
recorded and converted to stress, σ ¼ M=2πLR2
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inner cylinder height and radius, respectively). A steady state
follows long transients (on the order of hours for slow shear).
Flow curves, σðΩjφÞ, are plotted in Fig. 1, spanning 5 orders
of magnitude in angular velocity for a range of packing
densities.
Rheological regimes—In Fig. 1, we see that an air-

fluidized granular bed may behave as a Newtonian fluid at
low φ and Ω, as a shear thickening fluid at high Ω, or as
a shear thinning fluid at intermediate Ω and at high φ.
Similar regimes have been observed in molecular glasses
and colloids [37–39]. We will argue below that while
Bagnoldian shear thickening is genuinely granular, the
Newtonian and shear thinning behaviors, including evi-
dence of an incipient granular glass transition, may be
understood in terms that generalize concepts developed for
equilibrium fluids, highlighting a universality of fluidlike,
amorphous materials across scales.
Newtonian rheology—Characterized by the linear rela-

tion between shear stress and shear rate (or angular
velocity), σ ∝ Ω, a Newtonian regime is observed at low
shear and density. To translate the rotation rate, Ω, into the
shear rate in the gap, γ̇ ¼ KΩ, we use the well-known strain
constant KN ¼ 2δ2=ðδ2 − 1Þ (where δ ¼ Ro=Ri, ratio of
outer to inner shear cell radii). As the velocity gradient
depends on both shear geometry and the fluid’s rheology,
different rheological regimes imply different strain con-
stants; KN encodes the Taylor-Couette geometry for
Newtonian fluids (see Appendix B for full derivation).
Plotting ηðγ̇Þ ¼ σ=γ̇ [Fig. 2(a)] exhibits this regime of
constant viscosity, ηN ≔ ηðγ̇ → 0Þ.
In this regime, fluidization dominates over shear. The

dissipative collisions provide an energy sink with a power
density ΠcðT0Þ that balances the fluidization, Πf ¼ Πc,
and fixes a constant granular temperature in the unsheared

state, T0. Πγ̇ ≔ σγ̇ remains negligible compared to the
effect of fluidization,Πγ̇ ≪ Πf ; the granular temperature T0

does not change appreciably [32]. Qualitatively, the rheol-
ogy of the fluidized bed is the same as that of colloidal
suspensions. From this analogy, Newtonian rheology is
expected, with our shear rate independent viscosity, ηN,
increasing with density [39–41].
As a function of the packing fraction, we indeed measure

a strong increase in Newtonian viscosity, ηNðφÞ, captured
by a power law divergence [Fig. 2(b)],

ηNðφÞ ∝ ðΦ − φÞ−γ: ð1Þ

For dense suspensions, Eq. (1) is known as the Krieger-
Dougherty (K-D) relation [42], where Φ ¼ φg denotes the
maximal concentration of the suspension at which ηN
diverges (here, φg ¼ 0.6) and γ ¼ 2.5φg [dashed line in
Fig. 2(b)]. MCT can also be used to predict the divergence
of ηN upon approaching a critical density, Φ ¼ φc, with
φc < φg [35,41]. The system-specific parameter γ assumes
γ ≈ 2.4 [41], and φc ¼ 0.597 [solid line in Fig. 2(b)].
Above φc, the fluidized bed arrests into an amorphous
solid, with all particles still agitated (T0 > 0) but unable to
move over long distances due to the cagelike structure
formed by their neighbors [2,41,43].
Dynamic yield stress—While a true yield stress in

suspensions has been subject to debate [38,44], an apparent
yield stress at low γ̇ and high φ was since measured in
emulsions [45], foams [46], and colloidal [47] and granular
suspensions [48]. At our highest packing fraction, φ ¼
0.599≲ φg, we observe a well-defined plateau in the flow
curves, fromwhichwe can extrapolate a finite dynamic yield
stress, σ0 ≔ σðφgÞ ≈ 6 Pa, for the emerging granular glass.

(a) (b)

FIG. 2. Fluidized granular bed apparent viscosity, η ¼ σ=γ̇, in
the Newtonian and shear thinning regimes. (a) Viscosity, ηðγ̇Þ vs
shear rate, γ̇ ¼ KNΩ (see text for details). Péclet number Pe ¼ 1
[cf. Eq. (2)] is indicated by the dashed line, Pe > 1 by shaded
background. (b) Newtonian viscosity, ηN , averaged over the
relevant γ̇ for each packing fraction, φ; the vertical dotted line
indicates φg. Dashed line indicates Eq. (1) for the K-D relation;
solid line Eq. (1) according to MCT predictions.

FIG. 1. Steady-state flow curves, σðΩÞ, for air-fluidized glass
beads: shear stress, σ, vs angular velocity,Ω, of the inner cylinder
in a Taylor-Couette shear cell. Each flow curve corresponds to a
packing fraction, φ, given in the legend. Filled marks correspond
to the upward sweep, empty marks to the downward sweep in Ω.
Lines are a guide to the eye. Inset: global packing fraction vs
fluidization air flow velocity, φðuÞ; the gray line is a fit to
experimental data (details in Appendix A).
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In nonagitated granular solids, cohesive and frictional
forces in lasting particle contacts result in a static yield stress
[49–51]. By fluidization, contacts between particles are
explicitly broken, such that particle interactions cannot
explain the dynamic yield stress observed. Such dynamic
yield stress at the transition to an amorphous solid is expected
at the glass transition [32,34,52]. Because of the continuous
agitation, particles stay in motion (T0 > 0), even in the
granular glass state. This is incompatible with a static
(T0 ¼ 0), jammedconfiguration,with lasting particle-particle
contacts. It is however perfectly compatiblewith a glassy state
of matter, where local motion of a particle is permitted, but
long range motion is suppressed by the cagelike structure
formed by the particles’ neighbors [2,41,43].
A φg ¼ 0.6 is consistent with expectations. For colloidal

suspensions in thermal equilibrium, φg ≃ 0.57–0.58 [53]. A
higher φg for our agitated granular system can be attributed
to its characteristics: (i) polydispersity (within ¼d) allows
denser packing [54], and (ii) dissipative particle collisions
require a higher critical density to solidify [41]. Hence, we
identify φg as the density at a granular glass transition,
distinct from a jamming transition.
Shear thinning rheology—At intermediate γ̇, a shear

thinning regime appears, where η decreases with increasing
γ̇ [Fig. 2(a)].
In Brownian suspensions, shear thinning emerges when

shear-induced particle motion becomes relevant compared
to thermally activated diffusion. A finite diffusivity is
related to a finite structural relaxation time, τ, that diverges
with the viscosity, τ ∼ ηN. In our non-Brownian but con-
stantly agitated air-fluidized bed, it is the imposed granular
temperature that induces a timescale, τ, competing with that
of shear, 1=γ̇. The Péclet number captures this competition:
Pe ≪ 1 is associated with slow, fluidization-induced flow
and Pe ≫ 1 with shear dominated flow. In the latter case,
the fluid structure can no longer instantaneously adapt to
the imposed shear and effectively behaves as a yield stress
fluid, resulting in a shear thinning rheology.
We define a proxy for the characteristic fluidization-

induced timescale, τðφÞ ¼ ηNðφÞ=σðγ̇0jφÞ, by generalizing
the yield stress to a typical stress value, σ0ðφÞ ≔ σðγ̇0jφÞ
[49–51,55]. For the lower packing fractions, φ ≪ φg, we
use the stress at the flow curves’ inflection point, σðγ̇0Þ, at
the end of the Newtonian regime. [56]. This allows us to
calculate the corresponding Péclet number [57],

Pe ≔ ηNðφÞγ̇=σðγ̇0jφÞ: ð2Þ

In Figs. 2(a) and 4 we find, indeed, Pe ∼ 1 to trace the
crossover from Newtonian to shear thinning behavior,
generic for dense suspensions [34,37,38]. As long as
shear-induced agitation is negligible, we find the analogy
to colloidal suspensions to still hold.
Bagnoldian rheology—The shear thickening regime

appears once Ω≳ 10 s−1, and exhibits σ ∼Ω2 (see

Fig. 1), a scaling first identified by Bagnold in granular
suspension [27]. As the material’s flow profile varies with
its rheology, γ̇ is related to the angular velocity, Ω, by a
different strain constant, KB ¼ δ=ðδ − 1Þ (full derivation in
Appendix B), that captures the specifics of our shear
geometry, only now for a Bagnoldian instead of a classical
Newtonian fluid. The data in Fig. 3 is plotted for γ̇ ¼ KBΩ.
First, we want to assess whether Taylor vortices, pre-

viously observed in granular fluidized beds [59], and which
could explain a significant increase in σ [60], might appear
in our system. We calculate the gap Reynolds and Taylor
numbers for the granular fluidized bed. The former,
Re ¼ ρbφRiΩðRo − RiÞ=η, compares the timescale of rota-
tional advection to that of viscous damping. It remains
small throughout the experiment (Re < 10) (details in
Appendix C), suggesting laminar flow [55,61–64]. The
Taylor number, Ta [65], compares Coriolis to viscous
forces [62,66]. Taylor vortices are expected to emerge if
Ta exceeds a critical value, estimated around Tac ∼Oð103Þ
or above [62,66,67] (details in Appendix C). Figure 3(a)
shows that we do not achieve Taylor numbers higher than
Ta≲ 102 ≪ Tac, such that shear thickening cannot be
explained by the Taylor instability.
Dense suspensions generally feature a shear thickening

regime at high shear rates [38,68,69]. In Brownian suspen-
sions, two primary mechanisms are associated with shear
thickening: hydrodynamic effects and the lubrication-to-
friction transition [68,70–72]. But the shear thickening
observed in the Bagnold regime has a different origin.
While in Brownian suspensions, the interstitial fluid is in
thermal equilibrium with the particles and can absorb the
effect of shear heating, in the fluidized bed, the granular
temperature is decoupled from the air’s thermodynamic
temperature. The granular temperature is hence immediately
increased by shear heating, resulting in an increased shear
stress.

(a) (b)

FIG. 3. Flow curves analysis for the high shear rate regime
(where γ̇ ¼ KBΩ; see text for details). (a) Taylor number, Ta,
calculated on the full range of experimental data available.
Location of measurements indicated by black dots. (b) Dimen-
sionless Bagnold coefficients, B� as a function of shear rate γ̇ for
the packing fraction as given in the legend. The dash-dotted line
displays the location of power ratio Π ¼ 1, marking the onset of
the Bagnold regime.
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The crossover to the Bagnold regime is expected once
shear heating, Πγ̇ , becomes comparable to the fluidization
power density, Πf , i.e., at a ratio

Π ≔ Πγ̇=Πf ¼ σγ̇=ρpφug ð3Þ

of the order of one. In Figs. 3(b) and 4, we find that the
power density ratio, Π, indeed controls the emergence of
the Bagnold behavior.
We remark also that shear stress collapses for all φ once

reaching the shear thickening regime [Figs. 1, 2(a), 3(b),
and 5(a)]. We attribute this to shear dominating in this
regime: fluidization-induced variations in packing density
become negligible. The high γ̇ regime is hence indeed
Bagnold shear thickening, where γ̇ becomes the only
relevant timescale in the system.
The Bagnold regime and its emergence, specific to

granular materials [73], have been studied in a number
of contexts [74–76] yet quantitative measurements of
Bagnold coefficients are limited. In Fig. 3(b), we present
the Bagnold coefficients, B ¼ σ=γ̇2, expressed in dimen-
sionless form, as B� ¼ Bd=m (d and m average particle
diameter and mass). We find B� ∼Oð100Þ (averaged over
the four highest shear rates) with no clear density depend-
ence. We compare our results to Bagnold’s seminal
measurements [27], where 0.1 < B� < 10, increasing with
φ. The suspension used in [27] (wax spheres in liquids)
shows higher dissipation, consistent with the smaller B�,
compared to glass beads in air.
At this point, let us summarize that the flow curves of our

air-fluidized bed can be qualitatively characterized by two
dimensionless numbers: the power ratio, Π, and the Péclet
number, Pe (cf. Fig. 4). For Π > 1, the granular medium
becomes purely shear driven—fluidization is negligible—

and Bagnold rheology applies. For Π < 1, fluidization con-
trols the granular temperature T0—shear is negligible—and,
in complete analogy to Brownian suspensions, the rheology
evolves with the Péclet number from Newtonian (Pe ≪ 1) to
shear thinning (Pe ≫ 1).
Constitutive relation—The granular extension of the ITT

formalism, GITT [32,33], takes this scaling analysis into
account to extract the divergent relaxation time, τ, as well
as the power balance, to provide a dimensionless con-
stitutive relation for a dissipative smooth hard sphere.
Details about GITT are given in Appendix D and else-

where [32,33]. The physical intuition behind this model is
that of all stress relaxation modes; the slowest one in dense
fluids will be the density fluctuations [34]. In the GITT
model, the dimensionless shear stress, σðγ̇=ω0jφthÞ=P0,
[Eq. (D1)] is parametrized by the packing fraction, φth,
and uses properties of the unsheared fluid, namely, the
collision frequency, ω0, and the ideal particle pressure,
P0, as rate and stress scales, respectively. GITT predicts
the rheological state diagram presented as an inset in Fig. 4.
Given the qualitative similarity exhibited in Fig. 4, it is

tempting to use the GITT relation as a constitutive model
and fix its parameters by fitting. Note two things: firstly, we
do not know the shear rate, γ̇ðΩÞ, in the shear thinning
regime. To determine the nonlinear mapping that applies
there is beyond the scope of this Letter [77], and we simply
exclude the shear thinning regime from the fit. Secondly,
although we measured the packing fraction, φ, we treat the
packing fraction as a third fit parameter, φth. The glassy
dynamics model, namely granular MCT [41], at the heart of
GITT, is known to produce a finite offset, φ − φth > 0, to
the experimental values of φ. This offset has hitherto not
been quantified for granular fluidized beds.
In Fig. 5(a) we present the result of a manual fitting of

the GITT constitutive model to our experimental flow
curves. A detailed analysis of the fit parameters [Figs. 5(b)–
5(d)] is left for future work, but let us note that they all

FIG. 4. Rheological state diagram spanned by packing fraction
φ and shear rate γ̇. The flow index R (η ∝ γ̇R) is color coded,
where R ¼ 0 corresponds to Newtonian rheology and R < 0
(R > 0) indicates shear thinning (thickening) behavior. The
dashed line traces Péclet number Pe ¼ 1, and the dash-dotted
line delineates power ratio Π ¼ 1. The dotted line marks the
granular glass transition at φg ¼ 0.6.

(a) (b)

(c)

(d)

FIG. 5. (a) Constitutive relation [Eq. (D1), solid lines] fitted to
the experimental data (marks) in the Newtonian and Bagnold
regime. The fit parameters (for coefficient of restitution ε ¼ 0.8)
are the theoretical packing fraction, φth, ideal particle pressure in
the unsheared fluid, P0, and collision frequency, ωc. They are
given as a function of the experimental φ in (b), (c), and (d),
respectively.
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assume reasonable values and depend smoothly on the
experimentally measured packing fraction, φ. The ability of
the GITT constitutive model to capture both the Newtonian
and Bagnold regimes, separated by many orders of mag-
nitude in shear rate, shows that the ITT formalism extends
to off-equilibrium dynamics, and further supports our
scaling analysis of rheological regimes in air-fluidized
granular beds, constituting the core of this contribution.
Conclusion—We measure the rheology of a granular

bed, agitated by air fluidization, spanning 5 orders of
magnitude in shear rate, γ̇. We capture a diverse rheology:
Newtonian behavior at low γ̇ and packing density, φ; the
development of an apparent dynamic yield stress around
φg ¼ 0.6, which we interpret as a granular glass transition;
Bagnoldian shear thickening at high γ̇, where σ collapses
for all φ. The transitions between these regimes are
characterized by two dimensionless numbers: the shear-
to-fluidization power density ratio, Π, and the Péclet
number, Pe. While Π < 1, the granular bed behaves akin
to Brownian suspensions, Pe ¼ 1 marking the shift from
Newtonian to shear thinning behavior. At Π > 1, the
material enters the Bagnold regime, behaving like sheared,
unfluidized granular media. These different regimes are
qualitatively and quantitatively described by GITT, using
underlying similarities between glasses, colloids, and granu-
lar matter to propose a unified approach to understanding the
rheology of amorphous materials across scales.
With this Letter, we provide a framework to quantita-

tively characterize granular fluid’s flow on the same level as
has been available for ordinary fluids. This will make
granular flows amenable to continuum modeling in, e.g.,
industrial process design, geophysical hazard assessment,
or predictions for environments challenging to access (e.g.,
for space exploration). More broadly, the approach pre-
sented here, relying on the importance of a glass transition
and power balance, might apply more generally to non-
equilibrium fluids, notably active and biological matter—a
step toward a unified theoretical framework applicable
from biological to astronomical systems.
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End Matter

Appendix A: Methods—
Rheometry: The rheometry setup is an open-surface

Taylor-Couette (coaxial cylinders, inner cylinder rotating).
The surface of the inner cylinder promotes particle-particle
contact during shear [Fig. 6(a)].
Packing fractions: The global packing fraction is

determined as φðuÞ ¼ M=ρpVðuÞ, where the sample vol-
ume is obtained from the fluidization-dependent mean bed
height, hðuÞ, determined by image analysis.

The fit function to φðuÞ, shown as inset of Fig. 1, is of
form φ ¼ ðAuÞ−B, with A ¼ 91 960 sm−1, B ¼ 0.068.

Appendix B: Strain constants—In the stationary state,
forces in a fluid must balance, i.e., in terms of the stress
tensor, σ, we have ∇ · σ ¼ 0. Focusing on the shear
stress σðrÞ ≔ σrϑðrÞ, neglecting other shear components
and assuming a homogeneous pressure, this reads
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ð∇ · σÞϑ ¼ ∂σðrÞ
∂r

þ 2σðrÞ
r

¼ 0: ðB1Þ

In terms of the measured stress at the inner cylinder,
σ ≡ σðRiÞ, this implies σðrÞ ¼ ðRi=rÞ2σ, i.e., the shear
stress decreases quadratically toward the outer cylinder.
Assuming no-slip boundary conditions, the angular

velocity ΩðrÞ is fixed at the cylinders surfaces, ΩðRiÞ ¼
Ω and ΩðRoÞ ¼ 0. The shear rate is related to the gradient
of the angular velocity, γ̇ðrÞ ¼ rdΩðrÞ=dr, such that

Ω ¼
ZRo

Ri

dr
dΩ
dr

¼
ZRo

Ri

dr
γ̇ðrÞ
r

¼
Zσ

σ=δ2

γ̇ðsÞds
2s

: ðB2Þ

Using Newtonian rheology, γ̇ðσÞ ¼ σ=η, we find

η ¼ δ2 − 1

2δ2
×

σ

Ω
ðB3Þ

and recover the well-known strain constant for the Taylor-
Couette geometry,

γ̇N ¼ 2δ2

δ2 − 1
Ω: ðB4Þ

Assuming Bagnold rheology, instead, γ̇ðσÞ ¼ ffiffiffiffiffiffiffiffiffi
σ=B

p
,

Eq. (B2) yields

B ¼ ðδ − 1Þ2
δ2

×
σ

Ω2
ðB5Þ

and, respectively, the strain constant

γ̇B ¼ δ

δ − 1
Ω: ðB6Þ

Appendix C: Taylor instability—For dense granular
suspensions sheared in a Taylor-Couette geometry, the
critical Reynolds number above which flow instabilities
appear is Rec ∼Oð100Þ [55,61–64,80]. Throughout our
experiment, we strictly find Re < 10 (see Fig. 7),
suggesting circular Couette flow (laminar).

The dimensionless Taylor number, Ta, that compares the
Coriolis to viscous forces, depends, besides the shear
geometry, on the rotation rate Ω and the kinetic viscosity
ν ≔ η=ρbφ. We use the definition proposed by DiPrima
et al. [66],

Ta ¼ 2
ðδ − 1Þ
ðδþ 1Þ

�
ΩRiðRo − RiÞ

ν

�
2

¼ κRe2: ðC1Þ

Other definitions have been used [62,67,81–83]; for
Ta ¼ κRe2, generally κ ∼Oð1Þ.
The critical Taylor number Tac depends on the nature of

the fluid and shear geometry. The influence of the geometry
is rather well understood in case of Newtonian fluids, with
wider gaps having a higher Tac [66]. For non-Newtonian
fluids, η ∝ γ̇R≠0, the dependence of Tac on the flow index,
R, is mostly investigated for shear thinning or at most
mildly shear thickening fluids [81–83]. We are not aware of
explicit results for R ¼ 1, relevant for our Bagnold regime,
and particle concentration has yielded contradictory results
[62,64,67].
For non-Brownian suspensions at relatively high particle

concentrations (φ ¼ 0.5), Dash et al. [62] define Ta ∝ Re2

and measure Tac ∼Oð105Þ. Others [63,66,67] define Ta ∝
Re and find that the onset of Taylor instability happens at
Tac ∼Oð50Þ, translating in our definition to Tac ∼Oð103Þ.
For lack of (i) a widely accepted definition of Ta, (ii) a clear
critical value Tac, and (iii) understanding of the evolution
of Tac for non-Newtonian suspensions, we consider that,
following our definition, Ta < 103 ≲ Tac seem to indicate
that the shear thickening regime observed cannot be
explained by the Taylor instability.

Appendix D: Constitutive relation—The granular
integration through transient (GITT) [32,33] formalism
takes into account the scaling analysis presented in the
main text to provide a dimensionless constitutive relation
for a dissipative smooth hard sphere in terms of a
generalized Green-Kubo integral,

(b)(a)

FIG. 6. Rheometry setup. (a) Profiled inner cylinder. (b) Shear
cell dimensions (section view), with inner and outer cylinders
diameter, Di;o, respectively.

FIG. 7. Reynolds number, Re, calculated on the experiment
parameter space, vs shear rate, γ̇, and packing fraction, φ. Marks
are the measured data points.
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σðγ̇=ω0jφÞ=P0 ¼
γ̇

ω0

T
T0

X
q

Z
∞

0

dðω0tÞVqqð−tÞΦ2
qð−tÞðtÞ;

ðD1Þ

where P0, ω0 are the ideal particle pressure and collision
frequency in the unsheared fluidized bed, respectively.
The stress-density coupling constant, Vqqð−tÞ, is known

explicitly [33]. In addition to the explicit shear rate
dependence of the above relation, the shear rate also affects
the advection of the wave vectors, qð−tÞ, and the density

correlator, ΦqðtÞ, allowing for non-Newtonian rheology
[33,34].
The constitutive equation [Eq. (D1)] uses the packing

fraction, φ, to uniquely characterize the granular fluid. Note
however that the shape of the GITT constitutive relation
depends weakly on one more parameter [32], the coef-
ficient of restitution, ε, which we fix here to ε ¼ 0.8. The
granular temperature, T, in the sheared stationary state is
determined by the power density balance

Πγ̇ðTÞ þ Πf ¼ ΠcðTÞ: ðD2Þ
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