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Like ants, some microorganisms are known to leave trails on surfaces to communicate. We explore how
trail-mediated self-interaction could affect the behavior of individual microorganisms when diffusive
spreading of the trail is negligible on the time scale of the microorganism using a simple phenomenological
model for an actively moving particle and a finite-width trail. The effective dynamics of each
microorganism takes on the form of a stochastic integral equation with the trail interaction appearing
in the form of short-term memory. For a moderate coupling strength below an emergent critical value, the
dynamics exhibits effective diffusion in both orientation and position after a phase of superdiffusive
reorientation. We report experimental verification of a seemingly counterintuitive perpendicular alignment
mechanism that emerges from the model.
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For many animals andmicroorganisms, it is advantageous
to know where their companions or they themselves have
been [1–9]. To this end, many creatures leave trails of some
characteristic substance. A well-studied example is the
pheromone trails of ants [6,10], which allows them to collect
food efficiently. Single-cell organisms are also known to
leave trails [11,12]. It is believed that the trails help them form
aggregates in sparse populations [7,12,13],whereas indenser
populations, colonies could also result from the combined
effect of surface-bound motility and excluded volume
interactions [14,15]. For bacteria, these trails are often
subsumed as exopolysaccharides (EPS) [16] but may also
contain proteins [17]. To be evolutionarily favorable, the
(energetic) costs incurred by trail formation should balance
the advantages gained through this form of communication.
Chemotaxis is commonly mediated by rapidly diffusing

signaling molecules [7] but, more generally, cell-cell signal-
ing can also be mediated by trails of macromolecules that
diffuse much more slowly than the microorganism or form
stable gels [16,18]. Chemically mediated interactions
between bacteria or eukaryotic cells [4,19–24] as well as
artificial active colloids [25–27] lead to a variety of
collective phenomena including collapse, pattern formation,
alignment, and oscillations. Autochemotactic effects have
been studied in the context of swimming bacteria [28,29]
andDictyostelium cells [30].Whilemuch is knownabout the
chemotactic machinery in bacteria [31,32] and eukaryotic
cells [23], relatively little is known about trail-mediated
interactions.
Whereas ants have antennas that are spatially well

separated from their pheromone glands [33], such a clear
separation is difficult for single-celled organisms [17,34,35].
In addition to sensing the trails left by other individuals,

microorganisms are also immediately affected by their own
trails. This suggests that trail-mediated self-interaction could
play a significant role in the behavior of microorganisms, for
example, by providing a mechanism to tune the effective
translational and orientational diffusivities, or by creating
distinct modes of motility, and consequently, the search
strategy.
In this Letter, we discuss a simple but generic model of a

microorganism experiencing trail-mediated interactions.
Focusing on a persistent EPS trail with vanishing diffu-
sivity but taking its finite width explicitly into account, we
focus on the immediate self-interaction that previously had
to be excluded a priori by an ad hoc refractory period
[22,36]. While previous work has mostly considered a
concentration-dependent speed [20,28,29], a coupling to
the orientation arises naturally [21,27,37]. We find that the
self-trail interaction modifies the translational and orienta-
tional motion of the microorganisms and renormalize the
corresponding diffusion coefficients, at the longest time
scale (see Fig. 1).
Microscopic model.—We consider a single particle of

width 2R whose state at time t is defined by its position rðtÞ
and orientation n̂ðtÞ ¼ ðcosφ; sinφÞ. We model the dynam-
ics by prescribing a fixed characteristic speed v0 for the
particle, namely,

∂trðtÞ ¼ v0n̂ðtÞ: ð1aÞ
The motion will typically be generated via the cooperation
of a number of molecular motors, whether it is realized by
the retraction of pili [42,43], the extrusion of slime [44], or
any other mechanism. This implies significant noise in the
propulsion force and, consequentially, a finite directional

PRL 117, 038101 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
15 JULY 2016

0031-9007=16=117(3)=038101(6) 038101-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.117.038101
http://dx.doi.org/10.1103/PhysRevLett.117.038101
http://dx.doi.org/10.1103/PhysRevLett.117.038101
http://dx.doi.org/10.1103/PhysRevLett.117.038101


persistence. For the simplest, trail-free case, we model the
orientational dynamics as a purely diffusive process:
∂tφðtÞ ¼ ξðtÞ, where ξðtÞ is a Gaussian random variable
obeying hξðtÞξðt0Þi ¼ 2D0

rδðt − t0Þ and D0
r is the micro-

scopic rotational diffusion coefficient controlling the
persistence time 1=D0

r . This trail-free model displays a
translational mean-square displacement (MSD) δr2ðtÞ ¼
h½rðtÞ − rð0Þ�2i that crosses over from ballistic, δr2ðtÞ ¼
v20t

2, for D0
rt ≪ 1, to diffusive behavior, δr2ðtÞ ¼ 4D0t,

for D0
rt ≫ 1, where D0 ¼ v20=ð2D0

rÞ. Fluctuations in v0
could also be taken into account in a straightforward
generalization [45].
The trail excreted from the microorganism can be char-

acterized by the density profile ψðr; tÞ that satisfies the
diffusion equation ∂tψðr;tÞ−Dp∇2ψðr;tÞ¼kδ2R(r−rðtÞ),
where k is the deposition rate and δ2R(r − rðtÞ) is a
“regularized delta function” that accounts for the finite size
R, and traces its position [normalized as

R
d2rδ2RðrÞ ¼ 1].

Setting Dp ¼ 0, we find for the trail profile at time t and
position x as

ψðx; tÞ ¼ k
Z

t

0

dt0δ2R(x − rðt0Þ): ð1bÞ

We choose a rectangular source, δ2RðrÞ ¼ ΘðR2 − r2Þ=πR2,
where ΘðxÞ denotes the Heaviside step function and
r≡ jrj. The trail width 2R defines a microscopic time scale
τ ¼ R=v0, which gives the trail-crossing time [see Fig. 1(e)].
This specific regularization scheme is a good representa-
tion of the regime in which the characteristic diffusion
length of the polymeric trail is much smaller than the
width of the trail,

ffiffiffiffiffiffiffiffiffi
Dpτ

p
≪ R [46].

A generic interaction with the trail couples to gradients
of the trail field perpendicular to the current orientation
[22,27], effectively steering the microorganism toward
trails by favoring an orientation n̂ perpendicular to the
trail, i.e.,

∂tφðtÞ ¼ χ∂⊥ψ(rðtÞ; t)þ ξðtÞ; ð1cÞ

where ∂⊥ψ ¼ n̂⊥ðtÞ ·∇ψ(rðtÞ; t), with n̂⊥¼ð−sinφ;cosφÞ
being the angular unit vector in polar coordinates. The
sensitivity to the trail is controlled by a parameter χ. We
have provided a microscopic derivation of this coupling
[37] for a model system of a pili-driven bacterium on a
substrate [see Fig. 1(f)] by assuming a generic dependence
of the pili surface attachment force on the EPS concen-
tration. However, Eq. (1c) will be expected in the con-
tinuum limit for any microscopic model based on symmetry
considerations [27].
Effective dynamics.—We assume that the particle trajec-

tory does not bend back on itself immediately (no-small-
loops assumption) and that self-intersections on longer
times are rare enough to be negligible.
By making a short time expansion of Eqs. (1a) and (1c)

to be inserted into Eq. (1b), one finds a closed equation for
the head of the trail field ∂⊥ψðtÞ≡ ∂⊥ψ(rðtÞ; t) [37]. The
result is a stochastic integral equation

∂⊥ψðtÞ ¼
Ω
τ

Z
τ

0

duðτ − uÞ½∂⊥ψðt − uÞ þ ξðt − uÞ=χ�:
ð1dÞ

The effective turning rate Ω ¼ kχτ=πR3 increases for more
intense trails (larger k) and for more sensitive organisms
(larger χ). The delay τ reflects the memory imparted by
the trail. The closed set of equations [(1a), (1c), and (1d)]
constitutes our effective dynamical description of the
system.
For the average gradient, one finds h∂⊥ψi ∼ expðαtÞ,

where the rate α is given implicitly as the solution of
λðαÞ ¼ 0 where λðαÞ¼ 1− ðΩτ=ατÞ½1þð1=ατÞðe−ατ−1Þ�.
For Ωτ < 2, α < 0 and Eq. (1d) defines a random process

FIG. 1. Sample trajectories generated by the effective dynamics
[Eqs. (1a), (1c), and (1d)] over a period of time 103τ (color coded)
for no interaction with the trail, Ωτ≡ 0 (a); weak interaction,
Ωτ ¼ 1.2 (b); strong interaction, Ωτ ¼ 1.85 (c), close to the
localization transition, and above it,Ωτ ¼ 2.15 (d). The rotational
diffusivity is set to D0

rτ ¼ 10−2, and 2τ is the trail-crossing time.
(e) shows a magnification of the end of trail (b) with the trail field
ψðr; tÞ of width 2R in green and the current orientation of the
microorganism (ellipse), n̂. (f) Schematic depiction of a micro-
scopic model system such as P. aeruginosa that uses pili for
motility and sensing. (g) A schematic for the definition of Δθ,
which is the angle between the current body orientation and the
bacterial trajectory (dotted line).
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with zero mean that leads to a stationary dynamics which is
time-translation invariant. ForΩτ > 2 one finds α > 0; i.e.,
the gradient (angular velocity) diverges exponentially in
time, implying that the trajectory converges in a logarithmic
spiral to a localized point. This means there is a maximum
value of the product of trail deposition rate and sensitivity,
kχ, that allows steady-state motion. For sample trajectories,
see Figs. 1 and 3.
In the stationary regime, Eq. (1d) can be solved in the

frequency domain, χg∂⊥ψðωÞ¼½λ−1ðiωÞ−1�~ξðωÞ. The trail-
mediated self-interaction thus linearly transforms the intrin-
sic white noise ξ to an effective colored random angular
velocity ~ΞðωÞ¼ ~ξðωÞ=λðiωÞ such that ∂tφðtÞ¼ΞðtÞ.
Angular and translational MSD.—The most easily

accessible quantity in experiments is the translational
MSD δr2ðtÞ, which is related to the angular MSD δφ2ðtÞ ¼
h½φðtÞ − φð0Þ�2i via [47]

δr2ðtÞ ¼ 2v20

Z
t

0

dt0ðt − t0Þe−δφ2ðt0Þ=2: ð2Þ

The angular MSD is a sum of three terms, given in the

Laplace domain as s2dδφ2ðsÞ=ð2D0
rÞ¼ 1þ Δ̂ðsÞþ Λ̂ðsÞ:The

corrections to simple diffusion are given by the two
correlation functions ΛðtÞ ≔ χh∂⊥ψðtÞξð0Þi=ð2D0

rÞ [such
that Λ̂ðsÞ¼λ−1ðsÞ−1] andΔðtÞ¼χ2h∂⊥ψðtÞ∂⊥ψð0Þi=D0

r ¼
2
R
t
0dt

0Λðt0ÞΛðt0þtÞ. The definition of Λ̂ðsÞ shows thatΩτ is
the only relevant control parameter for the orientational
MSD δφ2ðtÞ and the behavior of δφ2ðtÞ is fully determined
by the analytic structure of λ−1ðsÞ.
In the stationary regime, δφ2ðtÞ [cf. Fig. 2(a) [48]] starts

off diffusively, δφ2ðtÞ ¼ 2D0
rt for t ≪ τ and becomes

asymptotically diffusive again, δφ2ðtÞ¼ 2Drt for t ≫
τ=ð1 −Ωτ=2Þ determined by the smallest pole of λ−1ðiωÞ.
The effective orientational diffusivity

Dr=D0
r ¼ 1þΩτ

2
×

1þ Ωτ=2
ð1 −Ωτ=2Þ2 ð3Þ

diverges for Ωτ → 2, confirming our expectation that
the trail-mediated self-interaction reduces orientational
persistence. The two diffusive regimes are joined by an
intermediate, superdiffusive regime. Note that the crossover
time to the asymptotic diffusive regime diverges as
Ωτ → 2. Close to the limiting value Ωτ ¼ 2, the crossover
is given by the superballistic law δφ2ðtÞ ¼ 6D0

rτðt=τÞ3 for
τ ≪ t ≪ τ=ð1 −Ωτ=2Þ. For a fast effective turning rate
Ω > D0

r , the intrinsic noise combines a diffusive (∝t1=2)
excursionwith the ballistic (∝ t) reorientation due to the self-
interaction, leading to δφðtÞ ∝ t3=2 until later times, where
the stochastic character of the self-interaction becomes
important and turns the behavior back to diffusion.
The translational MSD δr2ðtÞ always starts ballistically,

δr2ðtÞ¼v20t
2 for t≪τ and crosses over to diffusive behavior

δr2ðtÞ ¼ 4Dt for long times t → ∞ [cf. Fig. 2(b)]. The
crossover time t� will be determined implicitly by
δφ2ðt�Þ ∼ 1. For the location of the crossover and the
dependence of the translational diffusivity on the control
parameters, we have to consider a number of different
regimes.
Short persistence regime.—When ðD0

rτÞ−1 < 1þ Ωτ=2,
the crossover happens around Ωt ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Ω=D0

r

p
− 1 and

the asymptotic diffusivity

D=D0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πD0

r=2Ω
q

eD
0
r=2Ωerfc

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0

r=2Ω
q �

ð4Þ

is a function of the ratio D0
r=Ω alone.

Long persistence regime.—For sufficiently straight
trails such that by the time δφ2ðtÞ ∼ 1 it is already
deep in the long time diffusive regime, i.e., D0

rτ ≪
2ð1 −Ωτ=2Þ3=½2 − Ωτ þ ðΩτÞ2=2�, the crossover happens
around t ∼ 1=Dr and the asymptotic diffusivity is given as

D=D0 ¼ D0
r

Dr

�
1 −

ðD0
rτÞ2
6

Ωτð1þ Ωτ=2Þ3
ð1 − Ωτ=2Þ6

�
: ð5Þ

(a) (b) (c)

FIG. 2. Angular MSD δφ2ðtÞ (a) and translational MSD δr2ðtÞ normalized by the trail width R (b) as a function of time t for several
values of the effective turning rate Ωτ ¼ 0, 0.4, 0.7, 1.0, 1.3, 1.6, 1.9. The microscopic diffusivity is set to D0

rτ ¼ 0.1. The inset in
(a) shows δφ2ðtÞ for Ωτ ¼ 1.99 demonstrating the intermediate superballistic regime. (c) Color-coded translational diffusivity D
normalized by the trail width R and the trail-crossing time τ as a function of the control parameters. Note the logarithmic axes. Inset: The
translational diffusivity for the same range of parameters normalized by the trail-free (Ωτ≡ 0) value D0 on a linear scale. The white
contour lines are 0.1 apart.
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Critical regime.—Close to the upper limit Ωτ → 2 and
for D0

rτ < 1, the crossover happens around t=τ ∼ 1=
ffiffiffiffiffiffiffiffi
D0

rτ
3
p

and the asymptotic diffusivity

D=D0 ¼ Γð3=4ÞðD0
rτÞ2=3 þD0

rτ=3 ð6Þ
is a function of D0

rτ alone. Note that the dependence on the
intrinsic noise, D ∝ 1=

ffiffiffiffiffiffi
D0

r
3
p

, is significantly weakened
compared to the trail-free case, D0 ∝ 1=D0

r , and that D
does not vanish as Ωτ → 2.
Intermediate regime.—In the rest of the parameter space

ofD0
rτ andΩτ, no explicit expressions can be given and the

asymptotic diffusivity D will be a function of both control
parameters. Numerical result for the effective translational
diffusivity is presented in Fig. 2(c).
Discussion.—The interaction of a microorganism with its

own trail effectively introduces a new time scale 1=Ω.
The trail-mediated self-interaction modulates the intrinsic
noise in a linear but nontrivial way. While the asymptotic
dynamics remains diffusive below the critical value
Ωτ ¼ 2, for both the translational and the orientational
degrees of freedom, the (orientational) diffusive regime
may be reached only on time scales that may be much
longer than τ. This holds in the limit of strong interactions
where the crossover time scale τ=ð1 −Ωτ=2Þ becomes
increasingly large but also for large effective persistence
times 1=Dr. Moreover, the crossover times are distinct from
the microscopic persistence time 1=D0

r .
The asymptotic angular diffusivityDr is a function ofΩτ

that diverges as Ωτ → 2. It is always larger than its
microscopic value D0

r ; i.e., orientational persistence is
reduced by the trail. The translational diffusivity D, on
the other hand, is always reduced and, in general, depends
on the parameters Ωτ and D0

rτ.
For very strong trail-mediated self-interactions, Ωτ > 2,

the initial dynamics quickly confines the particle in a region
of size ≲2R. Here, our assumptions break down and the
ensuing dynamics will depend on more microscopic details
not resolved in the present model. Nevertheless, we can
formally identify the behavior of the microorganism by a
diverging rotational diffusivity. The translational diffusivity
incurs a finite jump at the transition point, as it is determined
by the regular short time part of δφ2ðtÞ below the transition
and by unresolvedmicroscopic details above it.We note that
the no-small-loops condition, which can be written as
δφ2ðτÞ ∼ ðΩτÞ2ðD0

rτÞ2 < π2, does not obscure this phase
transition, so long as D0

rτ < 1. The analysis of a more
microscopic model is beyond the scope of this contribution.
The behavior of the system can be summarized in a phase
diagram as shown in Fig. 3. Our findings are subtly different
from the subdiffusion observed in Ref. [51] as a result of the
temporary trapping of bacteria in loops caused by quenched
disorder, which is a stationary regime.
The perpendicular alignment strategy might appear to be

counterintuitive, but it is supported by recent experimental

evidence. We have investigated this question by probing the
angle distributions of single bacteria in experimentally
recorded motion of P. aeruginosa with different rates of
Psl exopolysaccharide deposition (in a similar experiment
to Ref. [12]); for methods, see Supplemental Material [37].
For the angle Δθ between the trajectory and the body
orientation [defined in Fig. 1(g)], the experiments show that
the distribution narrows down with increasing the secretion
of Psl trails via a mutant with an arabinose inducible
promoter, which increases the effective trail deposition
strength; see Figs. 4(b) and 4(c). Our numerical simulations
of the model predict a similar trend, as shown in Figs. 4(b)
and 4(c), highlighting the interplay between the noise and the
tendency of perpendicular alignment. The trail can have a
stabilizing effect by reorienting the microorganism towards
the inner regions in case it reaches the trail boundaries. The
result is a significantly narrower Δθ distribution with
increasing Ω, indicating a higher correlation between the

FIG. 3. Phase diagram of the dynamics of the microorganism
with trail-mediated self-interaction, as a function of the dimen-
sionless turning frequency Ωτ. Inset: Enlarged view of Fig. 1(d).

(a) (b) (c)

FIG. 4. (a) The experimentally observed narrowing of the Δθ
distribution with increasing trail deposition [see Fig. 1(g) for the
definition of Δθ]. The experiments were carried out with the
P. aeruginosa mutants ΔpslD, which does not secrete Psl (light
green) and ΔPpsl=PBAD-psl, which secretes Psl in response to the
arabinose in the environment. For ΔPpsl=PBAD-psl, the arabinose
concentration was varied between 0% (light blue, low Psl
deposition) and 1% (light red, high Psl deposition). (b) The
corresponding theoretical Δθ distributions result from the influ-
ence of the alignment term. The trail coupling strength is varied
between Ωτ ¼ 0.05 (green), Ωτ ¼ 0.12 (blue), and Ωτ ¼ 0.35
(red). The distribution has been sampled using the time interval of
Δt ¼ 0.2τ, and the rotational diffusion has been set to
D0

rτ ¼ 0.015. These values roughly correspond to the experi-
mental parameters at which the distribution has been measured.
(c) A comparison between experimental (dots) and theoretical
(lines) distributions of Δθ for the ΔPpsl=PBAD-psl mutant under
0% (blue) and 1% arabinose (red).
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trajectory and microorganism orientation. Further evidence
in support of the perpendicular alignment scenario can be
extracted from the collective behavior of the bacteria [52].
Our results could have significant biological (as well as

biophysical [37]) implications. Regulating the strength of the
trail-mediated self-interaction may allow microorganisms to
decide whether to confine themselves to smaller areas and
search them more thoroughly or explore larger areas.
Interestingly, the effective translational diffusion coefficient
scales as 1=

ffiffiffiffiffiffi
D0

r
3
p

in the presence of strong trail-mediated
self-interaction, as compared to 1=D0

r in the trail-free case.
This suggests that trails make the microorganism less
sensitive to intrinsic variations in the orientational noise.
In conclusion, we have shown that a very simple model

of particle-trail interaction leads to a wealth of nontrivial
phenomena, including a transition from stationary to
nonstationary behavior with a diverging orientational
diffusivity. Our results could shed light on the behavior
of trail-forming microorganisms and, in particular, how
they can use this “expensive” output to regulate their own
activity while, simultaneously, providing a communication
channel with other individuals. Moreover, they could also
find use in the field of robotics by providing a blueprint for
designing microrobots that can tune their search strategy
via local interactions with their own trails.
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