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A number of microorganisms leave persistent trails while moving along surfaces. For single-cell organisms,
the trail-mediated self-interaction will influence the dynamics. It has been discussed recently [Kranz et al.
Phys. Rev. Lett. 117, 038101 (2016)] that the self-interaction may localize the organism above a critical
coupling χc to the trail. Here we will derive a generalized active particle model capturing the key features
of the self-interaction and analyze its behavior for smaller couplings χ < χc. We find that fluctuations in
propulsion speed shift the localization transition to stronger couplings.

I. INTRODUCTION

Motility or active motion of an organism is most useful if
it can occur in response to external stimuli.1–3 It has been
recognized from the early days4 that directed motion is
already realized in both prokaryotic and eukaryotic single-
celled microorganisms.5–7 On the microbial scale, chemical
signals and the corresponding response—chemotaxis—are
the most widespread but by no means the only stimuli
that are used as information.

Surface dwelling microorganisms like the bacteria from
the species Pseudomonas, Neisseria and amoeboid slime
molds are known to leave trails8,9 of high molecular weight
biopolymers like polysaccharides.10–12 It is believed that
these trails are used as a means of cell-cell communi-
cation in particular in the process of colony and spore
formation.6,9,13–19 The precise mechanisms, however, are
still under active investigation.

Living organisms have intricate signal processing path-
ways, even on the microbial scale.20 Therefore the re-
sponse to a stimulus may be the result of a complicated
control algorithm. On the other hand there is evolution-
ary value in robustness.21 Simplicity often lends itself
to robustness. In recent years there has been a grow-
ing recognition that mechanistic models that forgo the
intracellular chemical signal processing may be able to
explain surprisingly complicated behavior.22–26 Here we
follow this active particle approach and do not address
the question of how much internal signal processing is
involved in trail interaction.

Rapidly diffusing, small molecules such as cyclic adeno-
sine monophosphate (camp) are also employed in cell-cell
communication in the form of auto-chemotaxis.27,28 This
form of inter-microbial communication is relatively well
understood both on the level of the intra-cellular signal-
ing path-ways and on the level of collective effects. Most
artificial active particles are auto-chemotactic in that they
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create and are propelled by local chemical gradients.26,29

All these systems are characterized by particles or organ-
isms whose typical speed v0 or typical effective diffusivity
D is much smaller than the diffusivity of the the signaling
molecules Dm � D, v0R not least because their size R
is much bigger than molecular length scales. In effect,
an organism’s self-generated concentration field is to a
lowest order approximation isotropic with respect to the
organism itself even if the organism is in motion. Self-
interaction of the organism with its own auto-chemotactic
field due to direct coupling with the translational degrees
of freedom has been studied in the past30 and shown not
to be strong enough to lead to trapping.31

The trail material, on the other hand, consists of en-
tangled macromolecules32 with a very low diffusivity
Dm � D, v0R. A moving microorganism will therefore
encounter an anisotropic distribution of its own trail. It
obviously leaves a trail behind and not all around. As
a consequence, the only observable dynamics is the ef-
fective dynamics that results from the interplay of the
organism’s propulsion mechanism and the trail-mediated
self-interaction. We have recently shown that this self-
interaction may profoundly alter the dynamics.33,34 Here
we will discuss this mechanism in more detail and on a
more general basis.

We will start by specifying the model in Sec. II and de-
rive the effective dynamics in Sec. III. Using this effective
description we will analyze the orientational dynamics in
Sec. IV and the translational diffusivity in Sec. V. We
will briefly discuss the influence of speed fluctuations in
Sec. VI before closing in Sec. VII.

II. BARE DYNAMICS

In the following we will be exclusively concerned with
the dynamics of a single microorganism on a pristine,
essentially flat surface. The state of a microorganism at
time t is fully described by its position r(t), its orientation
n̂(t) = (cosϕ(t), sinϕ(t)) and the trail it has left so far

ψ̃(x, t). We assume active propulsion along the current
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orientation n̂(t) with a mean speed v0 and small fluctua-
tions on top, characterized by a translational diffusivity
Dv,

dr(t) = n̂(t)(v0 dt+
√

2Dv dWt). (1)

Here Wt denotes a Wiener process. Orientational persis-
tence is observed to be limited in microorganisms such
that the rotational diffusivity D0

r should be substantial.
It has been found that a torque is naturally generated
by gradients of the trail field, ∇ψ̃(x, t), perpendicular
to the microorganism’s instantaneous orientation. To be
precise, the organism may not react to the actual trail
field but only to the trail field it senses via some transfer
function Ξ(x, t) that may perform some spatial averaging
and potentially some time integration. The orientation
dynamics is therefore of the following form,

dϕ(t) = χ∇⊥(t)(Ξ ∗ ψ̃)(r(t), t) dt+
√

2D0
r dZt, (2)

where Z is a second, independent Wiener processes,35 χ
characterizes the sensitivity of the microorganism to the
trail and ∇⊥(t) := êϕ(t) · ∇ where êϕ(t) ⊥ n̂(t). The as-
terisk denotes a convolution in space and time and Ξ(x, t)
is normalized such that

∫
d2x

∫
dt Ξ(x, t) = 1. Along its

trajectory r(t) := {r(t′)}t′<t, the microorganism deposits
trail material with a constant rate k and distributed ac-
cording to a compact profile Ψ̃(x2) normalized such that∫

Ψ̃(x2) d2x = 1,

ψ̃(x, t|r(t)) = k

∫ t

−∞
Ψ̃
(
[x− r(t′)]2

)
dt′. (3)

Equations. (1–3) constitute a set of stochastic integro-
differential equations for the time evolution of a single
crawling microorganism. We note that in order to un-
derstand the dynamics of the microorganism, we do not
need the full trail field ψ̃(x, t) but only what the organism

senses ∇⊥ψ(t) := ∇⊥(t)(Ξ ∗ ψ̃)(r(t), t). We imagine a
primarily mechanic response to the trail such that the
transfer function is instantaneous on the time scales of
the noise, Ξ(x, t) ∝ δ(t). Then it is sufficient to consider

an effective profile Ψ := Ξ ∗ Ψ̃, i.e.,

∇⊥ψ(t) = k∇⊥(t)

∫ t

−∞
dt′Ψ

(
[r(t)− r(t′)]2

)
. (4)

We may then expand the gradient as

∇⊥(t)Ψ
(
[r(t)− r(t′)]2

)
=

= 2êϕ(t) · [r(t)− r(t′)]Ψ′
(
[r(t)− r(t′)]2

)
, (5)

where the prime on Ψ denotes the derivative with respect
to the argument.

III. EFFECTIVE DYNAMICS

To make progress we have to make a number of as-
sumptions. We need the trail profile to be sufficiently well

FIG. 1. Sketch of the trail profile (as sensed by the organism)
ψ(r2) and its (negative) derivative −ψ′(r2) as a function of
the squared distance from the trail’s center. We assume well
defined trail edges, ∆R/R� 1, throughout.

defined (see Fig. 1) with a characteristic size R and a trail
boundary of width ∆R� R. Then we may approximate
Ψ(x2) ≈ Θ(R2 − x2)/πR2 where Θ(x) is the Heaviside
step-function. Likewise, we need the active propulsion
speed to be sufficiently well defined, i.e., Dv � v0R.
Then the characteristic time to cross a trail τ is narrowly
distributed around R/v0. We now assume a priori that
trails are sufficiently straight that self crossings can be
neglected. We will find below that the self-interaction
renormalizes the rotational diffusivity D0

r to an effective
value Dr, i.e., we assume Dr 〈τ〉 � 1 where 〈τ〉 is the
mean crossing time. If the trajectories are straight enough
so that the organism only rarely crosses its own trail, we
can safely ignore these self-crossings.

In the following we will adopt units such that R = v0 =
1 and k = π. With the above assumptions, Eq. (1–3)
reduce to

dr(t) = n̂(t)(dt+
√

2Dv dWt) (6)

dϕ(t) = χ∇⊥ψ(t) dt+
√

2D0
r dZt (7)

∇⊥ψ(t) = êϕ(t) ·
∫ t

−∞
dt′rtt′δ(1− rtt′) (8)

where rtt′ ≡ r(t)− r(t′).
Due to the Dirac delta in Eq. (8) and our assumption

that self-crossings are negligible, we only need to integrate
over a time interval of order unity. To this end, we iterate
the equations of motion (6,7) to lowest order and find

r(t)− r(t− t′) = n̂(t)t′ +
√

2Dvn̂(t)W−t′

+ êϕ(t)

∫ t−t′

t

du

∫ u

t

×

×
[
χ∇⊥ψ(w) dw +

√
2D0

r dZw

]
+ 2
√
DvD0

r êϕ(t)

∫ t−t′

t

Zu dWu,

(9)

where we have used that êϕ(w) ≈ êϕ(t) to lowest order. In
the following we are going to drop the last term in Eq. (9)
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because it contains the product of the small parameters
Dv, D

0
r � 1.

The first term in Eq. (9) turns the Dirac delta in Eq. (8)
into a first passage time problem of a one-dimensional
Brownian motion with unit drift, t +

√
2DvWt, on the

positive half line with a reflecting boundary at 0, i.e.,∫ t

−∞
dt′rtt′δ(1− rtt′) = r(t)− r(t− τ), (10)

where τ is a random variable, the first passage time. The
characterization of the first passage time distribution p(τ)
is a non-trivial task that we are not going to pursue here
but note that for Dv → 0, p(τ)→ δ(τ − 1).

Making use of Eqs. (9) and (10) in Eq. (8) we find a
closed equation for ∇⊥ψ(t),

∇⊥ψ(t) =

∫ t−τ

t

du

∫ u

t

[
χ∇⊥ψ(w) dw +

√
2D0

r dZw

]
.

(11)
Once we have a solution of Eq. (11) we can use it in Eqs. (6,
7) to analyze the effective dynamics of a microorganism
under trail-mediated self-interaction.

Let us start by considering a different representation
of Eq. (11),

∇⊥ψ(t) =

∫ τ

0

(τ−w)
[
χ∇⊥ψ(t− w) dw +

√
2D0

r dZt−w

]
,

(12)
to investigate the mean gradient

〈∇⊥ψ(t)〉Z = χ

∫ τ

0

dw(τ − w) 〈∇⊥ψ(t− w)〉Z . (13)

This is solved by the ansatz 〈∇⊥ψ(t)〉Z ∼ eαt given the
rate α solves the equation λτ (α) = 0 where [cf. Eq. (A5)]

λτ (α) = 1− χ

α

[
τ +

1

α

(
e−ατ − 1

)]
. (14)

For vanishing speed fluctuations, Dv → 0, τ ≡ 1, and we
recover the behavior of Ref. 33, i.e., the average gradient
relaxes to zero, α < 0, for weak coupling to the trail, χ <
2, whereas it grows exponentially above the critical value
χc = 2. For a discussion of the localization transition
that occurs for χ > χc we refer to Ref. 33.

For significant fluctuations, Dv > 0, we need to analyze
the ensemble average, λ(α) :=

∫∞
0

dτp(τ)λτ (α), over the
unknown first passage time distribution p(τ). For the
time being we assume that we may approximate λ(α) ≈
λ〈τ〉(α), i.e., by replacing the random variable τ by its

mean which is known exactly,36

〈τ〉 = 1 +Dv

(
e−1/Dv − 1

)
' 1−Dv. (15)

From λ〈τ〉(α) we find a critical coupling strength χc =

2/(1−Dv)2 which is shifted to larger values for increasing
speed fluctuations.

For χ < χc, ∇⊥ψ(t) represents a stochastic process
with zero mean and Eq. (11) can be solved in the Fourier
domain37 (cf. Sec. A)

∇̃⊥ψ(ω) =

√
2D0

r

χ
× [λ−1τ (iω)− 1]iωZ̃ω. (16)

Note that by the Wiener representation theorem, iωZ̃ω ∼
N (0, 1) are iid normal random variables. In other words
∇⊥ψ(t) is essentially filtered white noise. In particular,

ϕ̃(ω) =
√

2D0
rλ
−1
τ (iω)Z̃ω (17)

is a stationary Gaussian process for χ < χc. This implies
that the joint probability,

P (ϕ1 − ϕ2, t) = P (ϕ1, ϕ2, t
′, t′ + t)

=
1√

2πδϕ2(t)
e−(ϕ1−ϕ2)

2/2δϕ2(t),
(18)

is fully specified by the angular mean square displacement

δϕ2(t) =
〈
[ϕ(t′ + t)− ϕ(t′)]2

〉
. (19)

IV. THE ANGULAR MEAN SQUARE DISPLACEMENT

Using Eq. (17) we find

|s|2δ̂ϕ2(s) = 2D0
r

∫ ∞
0

dτp(τ)|λτ (s)|−2, (20)

where f̂(s) = LT[f ](s) =
∫∞
0

dtf(t)e−st is the Laplace
transform of f(t), s = σ + iω ∈ C. To make progress and
derive the results discussed in Ref. 33, we will again use
the mean first passage time approximation,

|s|2δ̂ϕ2(s) = 2D0
r |λ〈τ〉(s)|−2 (21)

and will analyze λ−1〈τ〉(s), cf. Eq. (14).

In order to understand the angular mean square dis-
placement in the time domain, we need to know the
analytical structure of λ−1〈τ〉(s). Due to the oscillating

factor e−iω there are infinitely many poles in the complex
plain and an analytical inverse Laplace transform is not
tractable. We may, however, consider the asymptotic
limits t → ∞ and t → 0. Note that, apart from the
trivial scale factor D0

r , the only control parameters that
affect δϕ2(t) is the coupling strength χ and the speed
fluctuations Dv.

A. Short-Time Asymptotics

Expanding λ〈τ〉(σ) in powers of σ−1 we find

λ〈τ〉(σ) = 1− χ(1−Dv)σ
−1 + χσ−2

+O
(
σ−2e−1/σ

−1)
. (22)
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FIG. 2. Influence of the speed fluctuations Dv on the effective dynamics for strong coupling to the trail χ = 1.8. (a,b) Angular
mean square displacement δϕ2(t) and translational mean square displacement δr2(t)/R2 as a function of time t normalized by
the mean crossing time 〈τ〉 for three different magnitudes of the speed fluctuations Dv/v0R = 0 (blue), 0.05 (yellow), 0.1 (green)
and a common value of the orientational diffusivity D0

r 〈τ〉 = 0.1. (c) Sample trajectories r(t) for the three different Dv/v0R = 0
(i), 0.05 (ii), and 0.1 (iii) color coded as a function of time for a total duration 50 〈τ〉 and D0

r 〈τ〉 = 0.01. See Sec. C for details
on the numerics.

The first three terms are dominant as long as e−1/σ
−1 � 1,

i.e., as long as σ−1 � 1, or upon reinstating units, for
times t� 〈τ〉. Then we have

|λ〈τ〉(σ →∞)|−2 ' 1 + 2(1−Dv)χσ
−1

− 2χ(1 + χ/χc)σ
−2, (23)

and in the time domain

δϕ2(t→ 0)/2D0
r ' t+χ(1−Dv)t

2−1

3
χ(1+χ/χc)t

3. (24)

In other words, the angular mean square displace-
ment starts with the bare diffusivity D0

r before the
self-interaction becomes visible on times of the order
1/χ(1−Dv).

B. Long-Time Asymptotics

Expanding λ〈τ〉(σ) in powers of σ we find

λ〈τ〉(σ) = 1− χ/χc +
χ

3χc
(1−Dv)σ +O(σ2). (25)

This shows that δϕ2(t→∞) = 2Drt will asymptotically
always be diffusive with a renormalized diffusivity38

Dr/D
0
r = |λ〈τ〉(0)|−2 = 1 +

χ

χc
× 2− χ/χc

(1− χ/χc)2
(26)

which diverges for χ→ χc.
The validity of the long time asymptotics is bounded by

the radius of convergence of the Taylor expansion, Eq. (25).
The latter is determined by the location of the pole of
λ−1〈τ〉(s) closest to the origin of the complex plane. In Sec. B

we show that Eq. (25) holds for |s| < 3(χc/χ − 1)/ 〈τ〉,
i.e., for times

t/ 〈τ〉 � t∗ :=
χ/χc

1− χ/χc
. (27)

The onset of the asymptotic regime, t∗, diverges with the
rotational diffusivity as χ→ χc.

For χ → χc we write χ = χc(1 − δχ). Assuming the
smallest pole σ = O(δχ) to be confirmed below we expand
to lowest order

λ〈τ〉(σ) = δχ+
1

3
(1−Dv)σ +O(δχ2, σ2, σδχ). (28)

Close to the critical coupling strength we therefore find

|λ〈τ〉(σ)|−2 ' 9

(1−Dv)2σ2
× 1

[1 + 3δχ/(1−Dv)σ]2
,

(29)
i.e., a superballistic behavior

δϕ2(t) =
3

2
χcD

0
rt

3 (30)

in a diverging time window 〈τ〉 � t� 1/3δχ.

V. THE TRANSLATIONAL MEAN SQUARE
DISPLACEMENT

The velocity autocorrelation function C(t) :=
〈ṙ(t+ t′) · ṙ(t′)〉 = 2Dvδ(t) + Cnn(t) where Cnn(t) :=
〈n̂(t+ t′) · n̂(t′)〉 can be determined explicitly with the
help of Eq. (18),39

Cnn(t) =

∫ ∞
−∞

dϕP (ϕ, t) cosϕ = e−δϕ
2(t)/2. (31)

The asymptotic translational diffusivity is then given by
a Green-Kubo integral

D/D0 = D0
r

∫ ∞
0

dt
[
2Dvδ(t) + e−δϕ

2(t)/2
]
, (32)

where D0 = 1/D0
r is the diffusivity for χ = Dv = 0.39
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The (translational) mean square displacement δr2(t) :=〈
[r(t+ t′)− r(t′)]2

〉
,

δr2(t) = 2

∫ t

0

du

∫ u

0

dwC(w) (33)

= 2Dvt+ 2

∫ t

0

dw(t− w)e−δϕ
2(w)/2 (34)

cannot be given in closed form. However, the form of
Eq. (33) indicates, that it will be dominated by the small
angle behavior, δϕ2(t) < 1, of the angular mean square
displacement.

In the following we will derive analytic expressions for
the diffusivity D in certain limiting cases.

A. Short Persistence Regime

For parameters such that δϕ2(〈τ〉)� 1, we may use the
short time expansion, Eq. (24). With this, the condition
reads 2D0

r � 1/[1 + χ(1 − Dv)] which shows that this
regime applies for small coupling strength χ and large
intrinsic rotational diffusivity D0

r . Given this is fulfilled,
we have

D/D0 = Dv/D
0 +D0

r

∫ ∞
0

dte−D
0
r [t+χ(1−Dv)t

2] (35)

=
√
π/κ erfc

(
1/
√
κ
)
e1/κ +Dv/D

0 (36)

= 1 +Dv/D0 − κ/2 + 3κ2/4 +O(κ3), (37)

where κ := 4χ(1−Dv)/D0
r � 1 is a kind of Peclet number

relating the “convective” rate χ to the diffusive rate D0
r .

B. Long Persistence Regime

The opposite limit is given by an angular mean square
displacement which reaches the value one well into the
asymptotic regime, δϕ2(t∗) � 1. A condition which
may be estimated as Dr/(1− χ/χc)� 1. Then we may
approximate δϕ(t) = 2Drt for all relevant times and
directly find

D/D0 = D0
r/Dr, or, equivalently, D = 1/Dr. (38)

In other words for very persistent trails, i.e., small intrin-
sic directional noise D0

r and/or small coupling strength
χ � χc, the asymptotic translational diffusivity is in-
versely proportional to the asymptotic rotational diffusiv-
ity. Higher order terms are given in Ref. 33.

C. Critical Regime

Close to the critical coupling strength, χ→ χc, we use
Eq. (30), to make the ansatz

δϕ2(t)/2D0
r = tΘ(〈τ〉 − t) + 3χct

3Θ(t− 〈τ〉)/4, (39)

patching together the short time, bare diffusion 2D0
rt, and

the intermediate time, superballistic behavior, ∝ t3. The
asymptotic diffusion is irrelevant here because δϕ2(t)� 1
before it sets in. Using this ansatz in Eq. (32), we find

D/D0 = Dv/D
0 +D0

r

∫ 〈τ〉
0

dte−D
0
rt

+D0
r

∫ ∞
〈τ〉

dte−3D
0
rχct

3/4. (40)

The second integral can be expressed in terms of the
generalized exponential integral En(x),

D/D0 = 1 +Dv/D
0 − e−D

0
r〈τ〉

+
1

3
D0
r 〈τ〉E2/3(3D0

r 〈τ〉 /2). (41)

Consistent with our assumption D0
r 〈τ〉 � 1 we need to

expand this to yield

D/D0 ' Γ(4/3)(D0
r 〈τ〉)2/3 − ( 3

√
3/2 〈τ〉 − 1)D0

r , (42)

where Γ(x) is the Euler Gamma-function. Note that for a
perfectly persistent organism, D0

r → 0, the translational
diffusivity will obviously diverge D ∼ (D0

r 〈τ〉)−1/3.

VI. THE EFFECT OF SPEED FLUCTUATIONS

Nonzero speed fluctuations Dv > 0 have multiple effects
as can bee seen by the examples in Fig. 2. For the angular
mean square displacement, the influence lies mostly in
the distance to the critical point χc. At vanishing fluc-
tuations, Dv = 0, the chosen coupling strength χ = 1.8
is close to the critical value χc = 2 and the trajectories
already begin to violate the assumptions of the derivation
by turning quickly. For increasing fluctuations Dv, the
critical value χc = 2/(1−Dv)2 shifts to higher values. In
effect, both the intermediate regime of the angular mean
square displacement as well as the asymptotic diffusivity
Dr decrease and the trajectories become straighter.

For the translational mean square displacement δr2(t),
the effects are less drastic but can be seen in both the
short and the long time limit. For short times, the ballis-
tic regime, δr2(t) ∝ t2 is replaced by diffusive behavior,
δr2(t) = Dvt. At intermediate times, the directed motion
prevails if the short time diffusivity is small enough as it
has been discussed by Peruani and Morelli 40 . For long
times the straighter trails enhance translational diffusiv-
ity for increasing fluctuations Dv but rather mildly so
because the differences in δϕ2(t) mostly occur at large
displacements δϕ2(t)� 1.

VII. CONCLUSION

We have started by motivating a model of a self pro-
pelled particle (the microorganism) on a two-dimensional
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plane that interacts with its own trail, cf. Eqs (1–3). A
simplified version of this model has been introduced by us
before.33 Here we argued that in reality the microorgan-
ism will not interact with the trail, ψ̃, itself but with its
observation of the trail, ψ. Given that ψ has well defined
edges, ∆R/R� 1, that the trails are reasonably straight,
Dr 〈τ〉 � 1 and the propulsion speed v0 is well defined,
Dv/Rv0 � 1, we showed how to decouple the equation
for the trail’s gradient, Eq. (11), from the equation of
motion of the particle, Eqs. (6,7).

Analyzing the effective trail gradient, Eq. (11), we
showed that it fails to regress to a zero mean beyond a
critical coupling strength

kχc
πv20R

=
2

(1−Dv/v0R)2
≥ 2. (43)

However for χ < χc, both the effective trail gradient,
Eq. (16), as well as the orientation, Eq. (17), turn out
to be filtered white noise. The filter function λ−1τ (iω),
Eq. (14), therefore, is crucial for the dynamics. In essence
we derived generalized expressions for the effective angular
[Eq. (26)] and translational diffusivity [Eqs. (37, 38, 42)],
special cases of which have been presented in Ref. 33.

The effect of the self-interaction becomes apparent on
a timescale t/ 〈τ〉 ∼ 1/χ which indicates the start of
an intermediate regime displaying angular superdiffusion
that extends to times t/ 〈τ〉 ∼ χ/χc(1 − χ/χc) beyond
which the dynamics is effectively diffusive again. The
onset of the asymptotic regime diverges for χ→ χc. The
translational dynamics is unaffected by the asymptotic
behavior of the angular motion due to the exponential
suppression in Eq. (31). Consequently, the translational
diffusivity remains finite at the critical coupling χ→ χc,
Eq. (42). A detailed analysis of the localized phase χ > χc
requires a new approach that includes the effect of frequent
self-crossings neglected here and is left to future work.

We note that trail-mediated self-interactions have been
recently studied in the context of aggregation and collec-
tive motion of myxobacteria, where experiments revealed
that the collective motion of the wild type of Myxococcus
Xanthus is organized in a network structure made out of
trails, in contrast with signaling-deficient mutants of the
species.41,42 These results have been rationalized theoret-
ically using a phenomenological agent-based model with
implemented trail-following rules.43 It will be interesting
to extend our study to mechanistically study the case
of myxobacteria by incorporating both positional and
orientational coupling to the trail and making predictions
about the collective behaviour as as been performed for
the case of Pseudomonas aeruginosa.33,34 We also note
that the self-trapping reported here is somehow remi-
niscent of the milling patterns that appear in a similar
cognitive flocking model of animals.44
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Appendix A: Solving Eq. (11)

To this end we start from yet another representation
of Eq. (11),

∇⊥ψ(t) =
√

2D0
r

∫ τ

0

du(Zt − Zt−u)

+ χ

∫ τ

0

du

∫ t

t−u
dw∇⊥ψ(w). (A1)

Employing the Fourier representation, we find for the first
term∫ τ

0

du(Zt − Zt−u) =

=

∫ ∞
−∞

dωZ̃ωe
iωt

∫ τ

0

du(1− e−iωu) (A2)

and for the second term∫ τ

0

du

∫ t

t−u
dw∇⊥ψ(w) =

=

∫ ∞
−∞

dω

∫ τ

0

du

∫ t

t−u
dw∇̃⊥ψ(ω)eiωw. (A3)

Upon performing the w-integral this yields∫ τ

0

du

∫ t

t−u
dw∇⊥ψ(w) =∫ ∞

−∞
dω
∇̃⊥ψ(ω)

iω
eiωt

∫ τ

0

du(1− e−iωu). (A4)

Together with∫ τ

0

du(1− e−iωu) = τ +
1

iω

(
e−iωτ − 1

)
(A5)

this implies that Eq. (11) in the Fourier domain reads

∇̃⊥ψ(ω) =
1− λτ (iω)

χ

(
χ∇̃⊥ψ(ω) +

√
2D0

r iωZ̃ω

)
(A6)

which can easily be solved for ∇̃⊥ψ(ω) to yield Eq. (16).

Appendix B: Poles near the Origin

For χ < χc we can rule out a pole at the origin. Then
we may rewrite the condition λ〈τ〉(s) = 0 as

s2 − χ 〈τ〉 s− χ
(
e−s〈τ〉 − 1

)
= 0, (B1)

http://dx.doi.org/10.1063/1.5081122


7

and to third order in s

1

6
χ 〈τ〉3 s3 + (1− χ 〈τ〉2 /2)s2 = 0. (B2)

This is solved by s∗ = −3(χc/χ− 1)/ 〈τ〉.

Appendix C: Details of the Numerics

We determined δϕ2(t) using a numerical inverse Laplace
transformation of Eq. (21) by the method of Abate and
Valkó 45 implemented in Python with the help of the
multi-precision library mpmath.46 The translational mean
square displacement δr2(t), we determined by numerical
integration of Eq. (33) using SciPy’s47 quad method.

For the trajectories we used SciPy’s inverse fast Fourier
transform ifft to determine ϕ(t) from Eq. (17) and then
Euler integration of Eq. (6).

1T. Fenchel, Science 296, 1068 (2002).
2J. Adler, Science 153, 708 (1966).
3I. Chet and R. Mitchell, Annu. Rev. Microbiol. 30, 221 (1976).
4T. W. Engelmann, Arch. gesamte Physiol. 26, 537 (1881).
5L. L. Burrows, Annu. Rev. Microbiol. 66, 493 (2012).
6B. Rodiek and M. J. B. Hauser, EPJ ST 224, 1199 (2015).
7B. Maier and G. C. L. Wong, Trends Microbiol. 23, 775 (2015).
8A. J. Merz and K. T. Forest, Curr. Biol. 12, R297 (2002).
9C. R. Reid, T. Latty, A. Dussutour, and M. Beekman, Proc. Natl.
Acad. Sci. 109, 17490 (2012).

10R. P. Burchard, J. Bacteriol. 152, 495 (1982).
11B. E. Christensen and W. G. Characklis, in Biofilms, Ecological

and Applied Microbiology, edited by W. G. Characklis and K. C.
Marshall (John Wiley & Sons, New York, 1990) pp. 93–130.

12K. Zhao, B. S. Tseng, B. Beckerman, F. Jin, M. L. Gibiansky,
J. J. Harrison, E. Luijten, M. R. Parsek, and G. C. Wong, Nature
497, 388 (2013).

13J. T. Bonner and L. J. Savage, J. Exp. Zool. 106, 1 (1947).
14R. M. Harshey, Mol. Microbiol. 13, 389 (1994).
15T. Nakagaki, Res. Microbiol. 152, 767 (2001).
16D. L. Higashi, S. W. Lee, A. Snyder, N. J. Weyand, A. Bakke,

and M. So, Infect. Immun. 75, 4743 (2007).
17D. Kaiser, Curr. Biol. 17, R561 (2007).
18E. Bernitt, C. Oettmeier, and H.-G. Döbereiner, in 6th World
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