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In a granular gas of rough particles the axis of rotation is shown to be correlated with the translational
velocity of the particles. The average relative orientation of angular and linear velocities depends on the
parameters which characterize the dissipative nature of the collision. We derive a simple theory for these
correlations and validate it with numerical simulations for a wide range of coefficients of normal and
tangential restitution. The limit of smooth spheres is shown to be singular: even an arbitrarily small
roughness of the particles gives rise to orientational correlations.
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Dilute systems of macroscopic particles, called granular
gases, show many novel and surprising phenomena when
compared to molecular gases. The particles of granular
gases are macroscopic bodies which in general dissipate
energy upon collision. As a consequence, such gases dem-
onstrate features which drastically differ from molecular
gases: The velocities are not distributed according to a
Maxwell-Boltzmann distribution [1–7]; equipartition
does not hold [8], and a homogeneous state is in general
unstable [9–11]. In this Letter we present another unex-
pected result: The angular and linear velocities of rough
particles are correlated in direction. In dependence on the
coefficients of restitution, characterizing the dissipative
particle properties, the rotational motion may be preferably
perpendicular to the direction of linear motion, similar to a
sliced (spinning) tennis ball, or in parallel to it, like a rifled
bullet, Fig. 1. Surprisingly, the limit of vanishing dissipa-
tion of the rotational motion does not exist, that is, any
arbitrarily small roughness leads to a macroscopic correla-
tion between spin and velocity. We present a kinetic theory
that quantifies this new effect and find good agreement
with large scale numerical simulations. It is expected that
the reported correlation between spin and linear velocity
may have important consequences in understanding natural
granular gases, such as dust clouds or planetary rings.

Model.—We consider a monodisperse granular gas con-
sisting of N hard spheres of radius a, mass m, and moment
of inertia I � qma2. While the analytical results below are
presented for general q, for the simulations we used q � 2

5
as valid for homogeneous spheres. The degrees of freedom
are the particles’ position vectors frig, translational veloc-
ities fvig, and rotational velocities f!ig for i � 1; 2; . . .N.
The dynamic evolution of the system is governed by in-
stantaneous two particle collisions, such that in general
both translational and rotational energy is dissipated. Intro-
ducing the relative velocity at the point of contact, g �
v1 � v2 � an� �!1 �!2�, the collision rules specify the
change of g in the direction of n � �r1 � r2�=jr1 � r2j and
perpendicular to n: �g � n�0 � �"n�g � n� and �g� n�0 �

�"t�g� n�, where the primed values refer to the postcol-
lision quantities. The coefficients of restitution in normal
and tangential direction, 0 � "n � 1 and �1 � "t � 1,
characterize the loss of energy and, thus, describe the
slowing down of the linear and rotational motion of the
particles. These coefficients are the central quantities in the
kinetic theory of granular gases [12]. For "n � 1 (elastic
spheres) and "t � 	1 (perfectly smooth or rough spheres)
the energy is conserved, while for "n ! 0 and "t ! 0
dissipation is maximal. Combining the above collision
rules with conservation of angular and linear momentum,
allows one to express the postcollision velocities in terms
of the precollisional ones

 v 01 � v1 � �; !01 � !1 �

�
1

aq

�
n� �;

v02 � v2 � �; !02 � !2 �

�
1

aq

�
n� �;

(1)

with � � �tg� ��n � �t��n � g�n and �n � �1� "n�=2,
�t � q�1� "t�=2�1� q�.

 

FIG. 1 (color). In granular gases, depending on the coefficients
of restitution, spin (red arrow) and linear velocity (gray arrow)
are oriented either preferably in parallel (cannon ball) or per-
pendicular (sliced tennis ball).
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When particles collide according to the above laws, two
processes take place: (i) dissipation of energy and
(ii) exchange of energy between the rotational and trans-
lational degrees of freedom. The first process is described
by two time-dependent granular temperatures

 Ttr �
m
3N

XN
i�1

v2
i and Trot �

I
3N

XN
i�1

!2
i : (2)

The second process drives the system to a quasi–steady
state, which is characterized by a constant ratio of the two
temperatures, r � Trot=Ttr � const. In this state both tem-
peratures continue to decay with their rates tied together by
_Trot= _Ttr � r. The ratio of temperatures, r, depends on the

coefficients of restitution "n and "t and can take values
smaller or larger than 1. If r < 1 collisions damp the
translational motion more efficiently than the rotational
one, j _T trj � j _Trotj=r > j _Trotj, whereas for r > 1 the rota-
tions are damped more efficiently.

At first glance there is no reason to expect that linear and
angular velocities v and! are correlated. Nevertheless, the
exchange of energy between the rotational and transla-
tional degrees of freedom may build up such correlations.
We quantify them by the mean square cosine of the angle
between v and !:
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If there are no correlations between the rotational and
translational motion, as in molecular gases, one obtains
K � 1

3 ; in granular gases we find that K in general deviates
significantly from 1

3 .
The full quantitative understanding of these correlations

requires detailed mathematical analysis of the collision
rules Eq. (1) (see below). Nevertheless simple physical
arguments are helpful for a qualitative understanding of
these correlations. The transfer of energy from the trans-
lational to the rotational degrees of freedom (and vice
versa) depends sensitively on the relative orientation of
vi � vj and !i �!j. To sustain a quasi–steady state with
a fixed ratio, r � Trot=Ttr requires that fluctuations away
from a given r are effectively suppressed. In the limit of
nearly smooth particles, "t & 1 and r� 1 [13], the argu-
ment is particularly simple: For most of the collisions the
relative velocity of the particles at the point of contact is
dominated by rotations g � vi � vj � an� �!i �!j� �

an� �!i �!j�. For nearly smooth particles the rotational
velocities change only slightly upon collision, !0i � !i
and!0j � !j, so that the collision rule Eq. (1) simplifies to

 v 0i � vi � ��tg � ��ta�n�!0i � n�!0j�; (4)

where �t  �1� "t� � 1. The first term on the right-hand
side gives a contribution to v0i that is always perpendicular
to the angular velocity !0i. The second term has no pre-
ferred orientation with respect to !0i,—the two vectors !0i
and !0j being uncorrelated in a dilute gas. Hence, the sum

of all contributions leads to v0i being preferably perpen-
dicular to !0i.

To describe these phenomena quantitatively beyond the
limit of nearly smooth spheres, we develop an analytical
theory which is based on an ansatz for the N-particle
distribution function. We assume homogeneity, except for
the excluded volume interaction, and molecular chaos,
implying that theN-particle velocity distribution factorizes
into a product of one particle distributions
 

�1�v;!; t� e��mv
2=2Ttr�t��

� e��I!
2=2Trot�t���1� b�t�v2!2P2�cos���: (5)

This ansatz takes into account for the first time orienta-
tional correlations between linear and angular velocities.
To lowest order these correlations can be characterized by
the second Legendre polynomial P2�x� 


3
2 x

2 � 1
2 . In gen-

eral there will be higher-order terms in ( cos�), as well as
non-Gaussian corrections for the velocity and angular ve-
locity distribution [12,13]. The effects of these terms is not
known a priori, but expected to be small, since the simplest
ansatz already captures, even quantitatively, the correla-
tions of interest. The strength of the orientational correla-
tions is given by b�t� which is related to the expectation
value of hcos2�it with the above distribution function

 hcos2�it �
1

3
� b�t�

6Ttr�t�Trot�t�

5qm2a2 (6)

Our ansatz (5) contains three functions, Ttr�t�, Trot�t�, and
b�t�, which have been calculated self-consistently using the
Pseudo Liouville operator.

Results.—We find that very strong dynamic correlations
may develop, depending on the initial conditions. After a
transient period, the correlation factor K reaches a steady-
state value which is independent of the initial conditions. In
Fig. 2 we show this steady-state value as a function of the
coefficient of tangential restitution "t for several values of
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FIG. 2 (color). Steady-state value of the correlation factor K �
hcos2�ii as a function of "t, for different values of "n. Lines:
analytical theory. Points: DSMC simulations. The isolated point
at "t � 1 indicates vanishing correlations for perfectly smooth
particles.
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the normal coefficient "n. We compare results from the
analytical theory with data obtained with direct simulation
Monte Carlo (DSMC) [14] of N � 2� 107 particles. The
analytical results are in qualitatively good agreement with
simulations, especially for small dissipation. As can be
seen in the figure, pronounced correlations are observed
for "t � 0, that is, for maximal damping of the tangential
motion. The correlations weaken when the damping de-
creases with growing j"tj and become less pronounced for
comparable tangential and normal dissipation, j"tj  "n.
With still increasing magnitude of "t, for "t > 0, the cor-
relations rise again, driving K away from the uncorrelated
value 1

3 .
The complete dependence of the correlation factor K on

both coefficients of restitution is shown in Fig. 3 along with
the contour plots of the temperature ratio r. In agreement
with the qualitative argument discussed above, we see that
translational and rotational velocities are preferentially
perpendicular (K < 1

3 ) in those regions where r strongly
deviates from 1.

The right-hand side of Fig. 2 reveals that the limit of
smooth spheres, is not continuous—contrary to naive ex-
pectations. For perfectly smooth particles "t � 1, we ob-
tain K � 1

3 , as expected for a molecular gas. This happens,
because translational and rotational motion decouple, so
that all spins simply persist in time. Hence, trivially, an-
gular and linear velocities are not correlated for "t � 1.
Nevertheless, even for vanishingly small roughness "t ! 1
the correlation factor K noticeably deviates from 1

3 . Our
analytic theory predicts

 lim
"t!1
hcos2�i1 �

1

3
�

3

8

�1� "n�
�7� "n�

; (7)

in good agreement with DSMC calculations. In the limit
"t ! 1 the relaxation time to the quasi–steady state di-
verges, because the exchange of energy between rotational
and translational degrees of freedom becomes more and
more inefficient as their mutual coupling vanishes.

Figure 4 gives an illustrative example, how correlations
develop in time. We have chosen parameter values and
initial conditions such that both regimes—dominance of
translational motion r� 1 and dominance of rotational
motion r� 1—are visible. Initially K � 1

3 and r! 0,
which means that correlations are lacking and the particles’
spins are vanishingly small. The evolution proceeds in
three stages. In the initial stage rotational motion is gen-
erated mainly in grazing collisions so that the particles
rotate around an axis perpendicular to their linear velocity,
like a spinning tennis ball, implying hcos2���i< 1

3 . Once
the rotational motion has become comparable in magni-
tude to the translational motion, correlations are small,
because both translational and rotational velocities con-
tribute about equally to the momentum transfer in colli-
sion. Finally in the asymptotic stationary state the
rotational motion is considerably more intense than the
translational motion, so that the quasi–stationary state with
r� 1 is characterized by significant correlations K < 1

3 .
Methods.—Two different numerical methods were used:

Direct simulation Monte Carlo (DSMC) [14] and event-
driven molecular dynamics (MD) [15]. In contrast to the
latter method, where the trajectory of each particle of the
ensemble is directly computed according to the basic kine-
matics and collision rules, the DSMC is based on the
solution of the kinetic Boltzmann equation. Because the
gas is explicitly treated as uniform in this method, and
spatial correlations between grains are ignored, it allows
one to handle up to 108 particles, which is necessary for

 

FIG. 3 (color). Color encoded steady-state value of K as
predicted by analytical theory as a function of "n and "t. The
full lines show the manifold K � 1

3 (no correlations); the dashed
lines are the contour plots for r � Trot=Ttr.
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FIG. 4 (color). Relaxation of temperature ratio r and correla-
tion factor K � hcos2���it to their steady-state values for "n �
0:8, "t � 0:8 and initial conditions Trot � 0, Ttr � 1. Full lines:
analytical theory. Dots: simulations of N � 8000 particles. The
vertical axes are chosen such that r � 1 coincides with K � 1

3 as
indicated by the gray line. Note the three different time regimes:
First, from r � 0 to r � 1, very strong correlations develop;
second, for r 1 correlations are small, i.e., K  1

3 ; finally in the
quasi–steady state with r� 1, correlations acquire a stationary
value K < 1

3 .
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the precise measurement of the effect of interest. While the
MD method is more appealing from a physical point of
view, the DSMC method is much more powerful for a
homogeneous granular gas; in the limit of low density
the two methods are, in principle, identical [15].

In the analytic approach we have used the pseudo
Liouville operator technique to compute the rates of

change _Ttr�t�, _Trot�t�, and _b�t� (see, e.g., [13] for details of
similar computations). Given our ansatz for the distribution
function, Eq. (5), these can be expressed in terms of Ttr�t�,
Trot�t�, and b�t� so that a closed set of three first order
nonlinear differential equations results. These allow for a
quasi–stationary state, where the ratio of temperatures and
the orientational correlations are independent of time. The
latter are described by

 hcos2�i1 �
1

3
� �

6

5

A�0� � �A� C� B
�0�

B � �B
�0� � C�0��r��1

A�1� � 40C� �A� C� B
�1�

B � �40B� B�1��r��1
: (8)

Here r� is the stationary ratio of temperatures which is given in [8] together with the coefficients A, B, and C. The
remaining coefficients are explicitly given by
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Details of the calculation will be published elsewhere.
Conclusions.—In conclusion, we reveal a novel phe-

nomenon, which is unique for granular gases and surpris-
ing in two respects: (a) Except for very special values of
the coefficients of restitution ("n, "t) the linear and angular
velocities are noticeably correlated. For most of the pa-
rameter values v and ! are preferably perpendicular and
K < 1

3 like for a sliced tennis ball. In a small region of low
dissipation they are preferably parallel, so that K > 1

3 like
for a rifled bullet. (b) The limit of vanishing tangential
dissipation, "t ! 1 is not continuous.

These results have important consequences for the hy-
drodynamic theory of dilute granular flows. It was recently
shown [7] that the angular velocity needs to be included in
the set of hydrodynamic fields. In view of the singular
nature of the limit of vanishing roughness, perturbation
expansions around the smooth limit are questionable.
Orientational correlations between spin and linear velocity
presumably also affect the stability of the system towards
shear fluctuations which constitute the dominant instability
of granular flows of smooth particles.
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Granular Gases (Oxford University Press, Oxford, 2004).
[13] T. Aspelmeier, M. Huthmann, and A. Zippelius, in

Granular Gases, edited by S. Luding and T. Pöschel,
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