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Abstract. In a granular gas of rough particles the spin of a grain is correlated
with its linear velocity. We develop an analytical theory to account for these
correlations and compare its predictions to numerical simulations, using Direct
Simulation Monte Carlo as well as Molecular Dynamics. The system is shown to
relax from an arbitrary initial state to a steady-state, which is characterized by
time-independent, finite correlations of spin and linear velocity. The latter are
analyzed systematically for a wide range of system parameters, including the co-
efficients of tangential and normal restitution as well as the moment of inertia of
the particles. For most parameter values the axis of rotation and the direction
of linear momentum are perpendicular like in a sliced tennis ball, while parallel
orientation, like in a rifled bullet, occurs only for a small range of parameters. The
limit of smooth spheres is singular: any arbitrarily small roughness unavoidably
causes significant translation-rotation correlations, whereas for perfectly smooth
spheres the rotational degrees of freedom are completely decoupled from the dy-
namic evolution of the gas.

1 Introduction

Materials which are composed of macroscopic objects, i.e. granular media, attract increasing
scientific interest due to their importance in nature and technology, e.g. [1,2]. The latter may
be exemplified by transport and storage of sand, cereals, granular chemicals, etc. the former–
by avalanches, land slides, dust devils, etc. Spectacular celestial objects, like planetary rings
or interstellar dust clouds, can serve as another example of natural granular systems [3]. The
granular matter exists there in a gaseous state and exhibits many properties of a common
molecular gas, e.g. [1,4–6]. The main (and very important) difference between a granular gas
and a molecular gas is the dissipative nature of particle interactions, which are described by
the macroscopic mechanics of solids rather than by a microscopic interaction potential. The
consequences of the dissipative interactions are quite substantial: A spatially homogeneous state
is unstable [7–9], velocities are not distributed according to a Maxwell-Boltzmann distribution
[10–18] and the diffusion or self-diffusion is anomalous [19–23]. These properties of a granular
gas have been observed for the case of smooth particles, when grain collisions do not affect
their rotational motion. This is, certainly, an oversimplified model, since real grains have a
rough surface and exchange rotational and translational energy in collisions.
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Real granular particles experience frictional forces when colliding. Hence, a more adequate
model takes into account the rotational motion of particles and the exchange of rotational and
translational energy in collisions [1,6,10,24–35]. Dissipative frictional gases exhibit additional
unusual features which are not present in molecular gases. For instance, equipartition between
rotational and translational motion does not hold [24] and the hydrodynamic description re-
quires an additional field and a dynamic equation to account for its evolution [26,36]. Moreover,
the rotational and translational motion of particles are correlated as mentioned in a very im-
plicit way in Appendix E of [26] and worked out in [37]. In the present study we analyze the
latter effect in detail.
In Section 2 we introduce a model of frictional particles and the dynamical variables of

interest. Subsequently in Section 3 an approximate theory is developed and in Section 4 we
briefly explain the simulation techniques. The main results are presented in Section 5, where
we compare predictions of the analytical theory with data from simulations. The emphasis lies
on the correlations in the steady state, but we also briefly discuss the relaxation to the steady
state. The technical details of the calculations are given in the Appendix.

2 Model and observables

We consider a granular gas consisting of N inelastic hard spheres of radius a, mass m, and
moment of inertia I = qma2. Here the dimensionless variable q is determined by the mass
distribution within the particle. The state of the system is fully described by the particles’
positions {ri}, velocities {vi}, and angular velocities {ωi} for i = 1, . . . , N . The particles move
freely in between instantaneous collisions, whereupon their linear and angular velocities change
according to the collision rule. The relative velocity at the point of contact of colliding particles
is

g ≡ v1 − v2 + an̂× (ω1 + ω2), (1)

with n̂ ≡ n̂12 ≡ (r1 − r2) / |r1 − r2|. The post-collisional (primed) velocity is related to the
pre-collisional one by

g′ · n̂ = −εn g · n̂ and g′ × n̂ = εt g × n̂ . (2)

The coefficient of normal restitution is denoted by εn with 0 ≤ εn ≤ 1. The value εn = 0 implies
no relative motion in the normal direction after the collision, whereas for εn = 1 no dissipation of
the normal component of the relative motion occurs. The coefficient of tangential restitution has
two elastic limits, namely εt = 1 corresponding to smooth spheres and εt = −1 corresponding
to perfectly rough (reflecting) collisions without loss of energy for the tangential motion. For
all other values energy is lost in the tangential component. In general, both coefficients of
restitution, εn and εt, depend on the impact velocity [38–41].
Together with the conservation of linear and angular momentum the collision rule, Eq. (2),

determines the post-collisional velocities in terms of the pre-collisional ones:

v′1 = v1 − δ, ω′1 = ω1 +
1

qa
(n̂× δ) , v′2 = v2 + δ , ω′2 = ω2 +

1

qa
(n̂× δ) , (3)

where mδ denotes the exchange of linear momentum with

δ ≡ ηtg + (ηn − ηt)(n̂ · g)n̂, (4)

ηn ≡
1 + εn
2
, ηt ≡

q

2

1− εt
1 + q

. (5)

In the present study we address only non-driven systems. Moreover, we focus on the homo-
geneous cooling state (HCS) of a gas, which is characterized by two time-dependent granular
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temperatures, one for the translational and one for the rotational motion,

T =
m

3N

N∑
i=1

v2i and R =
I

3N

N∑
i=1

ω2i . (6)

One generally observes that after a transient period the system reaches a steady-state where
r ≡ R(t)/T (t) = const., that is, both temperatures decay with the same rate. In general, r �= 1
so that equipartition is violated. The value of r depends on the collision parameters as well as
on the moment of inertia [24,42].
In this paper we focus on the correlation between the axis of rotation of a granular particle

and the direction of its linear velocity, which may be quantified by the angle θi between the
linear and rotational velocity,

cos θi =
vi · ωi
|vi||ωi|

. (7)

All information on the angle is contained in the distribution

f(cos θ) =
1

N

N∑
i=1

δ(cos θ − cos θi). (8)

In a molecular gas all values of cos θ occur with equal probability due to equipartition. In
contrast for a granular gas we know that equipartition is violated and we expect to observe
deviations from the equi-distribution.
Because of symmetry, the average of cos θi over all particles vanishes. Thus, a measure of

correlations is the second moment,

〈
cos2 θ

〉
=
1

N

∑
i

(vi · ωi)2
v2iω

2
i

. (9)

If the angular and linear velocities are not correlated in their direction,
〈
cos2 θ

〉
= 1/3. Hence,

any deviation of
〈
cos2 θ

〉
from 1/3 indicates correlations. Moreover, if

〈
cos2 θ

〉
< 1/3 the angular

and linear velocities are preferably perpendicular, like in a sliced tennis ball, while for
〈
cos2 θ

〉
>

1/3 they are preferably aligned like in a rifled bullet.

3 Approximate theory: Low order moments

Evolution of a granular gas is traditionally described by the Boltzmann equation for the
one-particle distribution function f(v,ω, t) which reads for homogeneous systems addressed
here,

∂

∂t
f(v,ω, t) = I(f, f) . (10)

The collision integral I(f, f) accounts for the alteration of the distribution function f(v,ω, t) in
the pair-wise collisions and is completely determined by the collision rule (3). The above kinetic
equation is very complicated and can hardly be solved in general. The standard approach,
used in kinetic theories (the ”Grad-like” procedure) is the following: (i) assume a form of the
distribution function, which depends on a limited number of moments, e.g.

〈
mv2
〉
,
〈
Iω2
〉
,〈

(v · ω)2
〉
, etc., (ii) substitute this form into the kinetic equation (10) and (iii) get a closed set

of equations for these moments1. Computations become more straightforward and notations
more compact if the formalism of the pseudo-Liouville operator is used; we briefly outline it
below.

1 Generally, one can assume the dependence of f(v,ω, t) on some free parameters (not necessarily
moments) and derive the set of equations for these parameters, projecting the Boltzmann equation
onto the low order moments.
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The evolution of any dynamical variable

F (t) = F ({ri(t),vi(t),ωi(t)}) (11)

may be obtained by means of the pseudo-Liouville operator L+ via

∂tF (t) = iL+F (t) for t > 0. (12)

For hard spheres the pseudo-Liouville operator decomposes into two parts, L+ = L0+L′+, where
L0 = Ltr0 +Lrot0 describes the free streaming of translational and rotational motion of particles.
Here Ltr0 =

∑
i vi · ∇i and a similar expression for Lrot0 . The latter is not needed here, because

we never specify the orientation of our particles, which are perfect spheres. The interaction part
of the pseudo-Liouville operator reads, L′+ =

∑
i<j Tij , where the binary collision operator Tij

reads [11,24]

iTij = −n̂ij · vijΘ(−n̂ij · vij) δ (rij − 2a)
(
b̂ij − 1

)
. (13)

The operator b̂ij replaces unprimed by primed values according to the collision rule, Eq. (3).
For example,

b̂12v1 = v
′
1 , b̂12v2 = v

′
2 , b̂12vk = vk , k �= 1, 2 (14)

with v′1 and v′2 given by Eq. (3) and with similar relations for the rotational velocities.
The ensemble average of a dynamic variable is defined by

〈F 〉t =
∫
dΓρ(0)F (t) =

∫
dΓρ(t)F (0) (15)

with dΓ=
∏
i(d
3rid

3vid
3ωi). Here F (t) = exp (−iL+t)F (0) and ρ(t) = exp (−iL†+t)ρ(0) denotes

the N -particle distribution, whose evolution is governed by the adjoint L†+ of the evolution
operator L+. Differentiating Eq. (15) one obtains

d

dt
〈F 〉t =

∫
dΓρ(0)

d

dt
F (t) =

∫
dΓρ(0)iL+F (t) =

∫
dΓρ(0) exp (iL+t)iL+F (0)

=

∫
dΓρ(t)iL+F (0) = 〈iL+F 〉t. (16)

It is impossible to compute the time-dependent N -particle distribution exactly, so that we have
to resort to approximations. A standard procedure in the analytical treatment of granular gases
is to assume homogeneity and molecular chaos, e.g. [6] (see also [43]). Under these assumptions
the N -particle velocity distribution function takes the form

ρ(t) = gN (r1, . . . , rN )
∏
i

f(vi,ωi, t) , (17)

where theN -particle correlation function of a hard sphere system, gN (r1, . . . , rN ), is not affected
by the particle roughness. For the HCS it may be approximated by the corresponding function
of an equilibrium hard-sphere system (e.g. [6]). For an isotropic system f(v,ω) depends in
general on v = |v|,ω = |ω| and the angle θ (cos θ = v · ω/ (|v| |ω|). Here we are particularly
interested in the dependence on cos θ and expand f around a product of Maxwellians in Legendre
polynomials Pq(cos θ)

f(v,ω, t) ∝ exp
(
− mv

2

2T (t)

)
exp

(
− Iω

2

2R(t)

) ∞∑
n=0

∞∑
p=0

∞∑
q=0

bnpq(t)v
2nω2pPq(cos θ) , (18)

where bnpq(t) are time dependent expansion coefficients and the distribution function has to
be normalized according to

∫
dvdωf = 1. In the following we use a simple Gaussian even

though the distributions are non-Gaussian for strong dissipation and high densities. Deviations
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have been handled by an expansion in Sonine polynomials [44]. Here we concentrate on the
dependence on cos θ and leave a more general Ansatz with both, angular correlations and
non-Gaussian distributions, to future work. To keep the calculations tractable, we limit the
calculation to the lowest non-trivial order

f(v,ω, t) ∝ exp
(
− mv

2

2T (t)

)
exp

(
− Iω

2

2R(t)

)[
1 + b(t)v2ω2P2(cos θ)

]
, (19)

where b(t) ≡ b112(t) and P2(cos θ) = 3/2(cos2 θ − 1/3). The terms for odd q vanish by
symmetry.
The lowest order coefficient b(t) is simply related to the quantity of interest

〈
cos2 θ

〉
t
. Using

P0(cos θ) = 1 and expressing
〈
cos2 θ

〉
t
in terms of Legendre polynomials we can write

〈
cos2 θ

〉
t
=
1

3

∫
v

∫
ω

[P0(cos θ) + 2P2(cos θ)] [P0(cos θ) + b(t)v
2ω2P2(cos θ)] (20)

where for brevity we introduce the shorthand notation∫
v

=
( m
2πT

)3/2 ∫
d3v exp

(
−mv

2

2T

)
(21)

and similarly for
∫
ω
. The angular integration in the Eq. (20) may be performed using the

orthogonality relation for Legendre polynomials, yielding

〈
cos2 θ

〉
t
=
1

3
+ b(t)

6T (t)R(t)

5qm2a2
. (22)

Hence, the correlations of interest manifest themselves through the coefficient b(t) – the larger
the coefficient, the more pronounced are deviations from the value

〈
cos2 θ

〉
= 1/3 of the uncor-

related case.
To summarize our analytical approach so far: The time dependent N -particle distribution

has been parametrised by three time-dependent functions T (t), R(t) and b(t), which have to
be calculated self-consistently. This is achieved by applying the general equation (16) for the
evolution of a dynamical variable to T (t), R(t) and b(t) and using our Ansatz for ρ(t), see Eqs.
(17), (19). Due to the specific functional form of our ansatz – a product of polynomials and
gaussians in the velocities – the set of self-consistent equations can be determined analytically.
The detailed derivation of these equations are given in the Appendix.
The result of these cumbersome (although straightforward) calculations are three first order

differential equations for T (t), R(t) and b(t). These simplify, if we measure times in units of
the Enskog collision frequency ωE = 16(πT/m)

1/2na2g2(2a). In other words we rescale time
according to dτ = ωEdt and obtain:

dT

dτ
= −AT (τ) +B

[
1− b(τ)

2

T (τ)R(τ)

qm2a2

]
R(τ)

dR

dτ
= BT (τ)− C

[
1− b(τ)

2

T (τ)R(τ)

qm2a2

]
R(τ)

(23)

where

A ≡ ηn(1− ηn) + ηt(1− ηt) , B ≡ η
2
t

q
, C ≡ ηt

q

(
1− ηt

q

)
. (24)

and

20
db

dτ
= −b(τ)

[
A(1) +B(1)

R(τ)

T (τ)
+
40

T (τ)

dT

dτ
(τ) +

40

R(τ)

dR

dτ
(τ)

]

− qm2a2

T (τ)R(τ)

[
A(0) +B(0)

R(τ)

T (τ)
+ C(0)

T (τ)

R(τ)

]
. (25)
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The constants are given by:

A(0)≡ 16
3

η3t
q

(
2ηt
q
−1
)
− 2
3

η2t
q

(
8ηt
q
−3
)
+
1

3

ηt

q

(
ηt

q
−1
)
+
8

3

ηt

q

(
ηt

q
−1
)
ηn(ηn−1) (26a)

B(0) ≡ 1
3

η2t
q

[
16ηt
q

(
ηt

q
− 1
)
+ 5

]
(26b)

C(0) ≡ 2
3

η2t
q
[8ηt(ηt − 1) + 4ηn(ηn − 1) + 3] (26c)

A(1) ≡ −8η
3
t

q

(
2ηt
q
− 1
)
+
1

3

η2t
q

(
24ηt
q
− 37
)
− 5
6

ηt

q

(
9ηt
q
− 29
)
− 4ηtη

2
n

q

(
ηt

q
− 1
)
(26d)

+
4

3

ηtηn

q

(
3ηt
q
− 14
)
− 12ηtηn + 22 (ηt + ηn)− 6

(
η2t + η

2
n

)
(26e)

B(1) ≡ −2
3

η2t
q

[
8ηt
q

(
ηt

q
− 1
)
+ 1

]
. (26f)

Equations (23) and (25) constitute a set of self-consistent equations for the observables
T (t), R(t), and b(t). Note that applying the technique of the pseudo-Liouville operator we
essentially use the Grad-like procedure, that is, we assume the form of the distribution function
(19) with three parameters, related to the moments of the distribution function and find the
equations for these parameters.

4 Simulations

We performed both Direct Simulation Monte Carlo (DSMC) [45] and event-driven Molecular
Dynamics (MD) [46] calculations to check the predictions of the analytical theory. DSMC
determines the stationary distribution of the scaled velocities by numerically solving the kinetic
Boltzmann equation which is based on the assumption of molecular chaos. Consequently, for
its application it is assumed that the gas is uniform, thus, spatial correlations of the particles
are neglected. If this precondition is given, that is, if the spatial correlations are negligible,
DSMC yields very precise statistical results because of the large number of particles which can
be simulated (here we use N = 2× 107 particles2).
Molecular Dynamics calculates the trajectories of the particles using the collision rule,

Eq. (2), therefore, MD allows to trace the evolution of the correlation. On the other hand,
MD is restricted to much smaller systems as compared to DSMC. Although MD is free from
the mentioned assumptions, DSMC is significantly more efficient for a homogeneous granular
gas. Moreover, in the limit of low density both methods provide, in principle, identical results
for the steady-state [46]. In practice, we use MD for N = 8000 particles to study the transient
process of the system’s relaxation to its steady-state and up to N = 105 for steady state corre-

lations. The volume fraction was φ0 =
N
V
4πa3

3 = 0.0146 or even smaller, such that the size of

the system L = (4πN/3)1/3a was small enough to remain always in the HCS.

2 To be precise, although the mathematical operations in DSMC look like a particle simulation, the
particles in the simulation do not correspond to real particles. They are better considered as quanta of
probability [47].
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5 Results

Starting from a random distribution of velocities and angular velocities with mean 〈v〉 = 〈ω〉 =
0, after some transient period the system relaxes to a steady state where the correlation of the
spin and the translational velocity as well as the ratio of translational and rotational temper-
atures reach stationary values. We quantify these correlations by means of the second moment〈
cos2 θ

〉
, see Eq. (9) and analyze this quantity as a function of three parameters, εn, εt, and

q in Section 5.1. The relaxation to the steady state is discussed in Section 5.2 and in Section
5.3 we consider correlations beyond the second moment and investigate the distribution of
cos θ.

5.1 Steady-state correlations

To study the steady-state properties it is convenient to introduce an auxiliary variable

x(τ) ≡ b(τ)T (τ)R(τ)
qm2a2

=
5

6

(〈
cos2 θ

〉
τ
− 1
3

)
. (27)

Using x(τ) and r(τ) = R(τ)/T (τ) we recast the set of three equations (23,25) for b, R and T
into a set of two equations for x and r. The result reads

dr

dτ
= B − C

[
1− x(τ)

2

]
r(τ) +Ar(τ)−B

[
1− x(τ)

2

]
r2(τ) (28)

20
dx

dτ
= −x(τ)

{
A(1) +B(1)r(τ)− 20A− 20C + 20B

[
r(τ) +

1

r(τ)

]
+ 20x(τ)

C −B r(τ)
2

}

−A(0) −B(0)r(τ)− C(0)r−1(τ). (29)

Setting the left hand side of Eqs. (28) and (29) to zero one arrives at a set of coupled nonlinear
equations for the stationary values r∞ ≡ r(τ → ∞) and x∞ ≡ x(τ → ∞). Instead of solving
these equations directly (which has been done for the complete set (23–25)), we resort to an
iteration scheme: At the outset we calculate a first approximation of the temperature ratio

r
(0)
∞ neglecting correlations, that is, for x = 0. Hence we assume that for moderate inelasticity
and roughness the temperature ratio is not noticeably affected by the rotational-translational
coupling; this is confirmed below by the direct simulations. The result reads

r(0)∞ =
A− C
2B

+

√
1 +
(A− C)2
4B2

. (30)

Using this value for the steady-state temperature ratio we then proceed to calculate an approx-
imate value of x∞

x(0)∞ = −
A(0) +B(0)r

(0)
∞ + C(0)/r

(0)
∞

A(1) +B(1)r
(0)
∞ − 40C + 40B/r(0)∞

(31)

where we use the fact, that

B
[
r(0)∞ + 1/r

(0)
∞
]
= A− C + 2B/r(0)∞ (32)

and neglect the terms quadratic in x∞ assuming that they are small. The obtained x∞ is indeed
small, which (together with the simulation data) confirms a posteriori the validity of the above
assumption. In principle, one could further iterate to get better approximations, but we find
that the results are reasonably good already at this stage. For the more intuitive variable, cos2 θ,
Eq. (31) implies

〈
cos2 θ

〉
∞ ≈

1

3
− 6
5

A(0) +B(0)r
(0)
∞ + C(0)/r

(0)
∞

A(1) +B(1)r
(0)
∞ + 40B/r

(0)
∞ − 40C

. (33)
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Fig. 1. Steady-state value of
〈
cos2 θ

〉
∞ as a function of the coefficient of tangential restitution, εt,

for different εn. The predictions of the analytical theory, Eq. (33), are depicted by lines and points
indicate the simulation data by DSMC. The line of vanishing correlations,

〈
cos2 θ

〉
= 1/3 is shown, as

well as the isolated point εt = 1, which refers to the system of perfectly smooth hard spheres. Note the
existence of non-vanishing correlations even in the limit of smooth spheres, εt → 1 (see Eq. (34)).

Note that the steady-state solution of Eqs. (28), (29) is a stable one, which is discussed in detail
below for the particular case of nearly smooth particles.
Figure 1 shows the steady-state value of the correlation factor

〈
cos2 θ

〉
∞ as a function of εt

for different values of εn in comparison with DSMC results. Obviously, theory as well as simula-
tions show that both types of correlations may occur,

〈
cos2 θ

〉
< 1/3, as for a sliced tennis ball

or
〈
cos2 θ

〉
> 1/3 as for a rifled bullet. The dependence of the correlations on εt is nonmonotonic

with the strongest correlations for εt ∼ 0 and εt → 1. Even though the dependence on εn is also
not strictly monotonic, the dominant tendency is an increase of correlations with decreasing εn,
i.e. increasing inelasticity. The agreement between theory and computer experiment is excellent
for small inelasticity. Moreover, even for significant dissipation the theory is able to reproduce
qualitatively the simulation results.
Decreasing the moment of inertia, q, turns the magnitude of the correlations more sensitive to

changes in the coefficients of tangential restitution, as one can see from Figure 2. Interestingly,
varying the moment of inertia can even alter the type of the correlations: For instance, for
q = 1/5 there exists a region for εt > 0, where the rotation axis is preferably directed along the
linear velocity,

〈
cos2 θ

〉
∞ > 1/3, while for q = 2/3 there is no such region.

Figure 3 (upper panel) illustrates the analytical result, Eq. (33) for the whole range of
parameters εt and εn. Note that for the majority of values of the coefficients,

〈
cos2 θ

〉
∞ < 1/3,

that is, in most cases the axes tend to be perpendicular to each other. Only in two small
regions of the parameter space the axes are preferably parallel. The correlations vanish only
for combinations of εn and εt indicated by full lines. Dashed lines show curves of constant r.
Strong correlations appear for large deviations from equipartition. This is shown more clearly
in the middle and bottom panels of Fig. 3 which demonstrate the rather strong influence of the
moment of inertia I on the correlation factor

〈
cos2 θ

〉
∞.

To check the assumption that strong correlations occur for strong deviations from equipar-
tition, we plot in Fig. 4 the correlation factor

〈
cos2 θ

〉
∞ as a function of r∞ and εt. Technically

this may be done, using εn = εn(r∞)–the inverse function of r∞ = r∞(εn), given by Eq. (30),
for each fixed εt. Note that pronounced correlations are present mainly for strong dissipation
and large temperature ratios. Also note the small range of admissible temperature ratios for
very rough spheres.
Analyzing Eq. (33) in the limit of vanishing roughness,

K(0) ≡ lim
εt→1

〈
cos2 θ

〉
∞ −

1

3
= −3
8

1− εn
7− εn

(34)
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Fig. 2. Steady-state value of
〈
cos2 θ

〉
∞ for εn = 0.9 as a function of εt and for different moments of

inertia of a grain (see also Fig. 7). With the decreasing moment of inertia the correlations become more
sensitive to variations of the coefficient of tangential restitution.

we see that even the smallest roughness induces finite correlations, for any given (fixed) value
of the coefficient of normal restitution, εn �= 1. Physically, this follows from the fact that for
a very small roughness the rotation motion dominates in the steady-state. As the result, from
the collision rules (3) follows that after a collision, the linear velocity v′1 of a particle possesses
a component, perpendicular to its angular velocity, which does not vanish upon averaging, in
contrast to other contributions to v′1 (see [37] for more detailed discussion of this effect). For εt =
1, that is, for perfectly smooth spheres, the initial rotational velocity of the particles is preserved.
Therefore, the initial rotational energy is preserved as well and r does not reach a steady state.
On the other hand

〈
cos2 θ

〉
relaxes to the steady-state value 1/3 once the correlations in the

initial values of the translational velocities are lost due to collisions. Hence a straightforward
expansion around εt = 1 is problematic, or at least should be done with much care, as long as
there is a finite inelasticity εn �= 1. [See also the discussion of relaxation times in the following
paragraph.]

5.2 Relaxation to the steady-state

So far we have discussed the steady-state with a scaling solution, which is characterized by
constant r and

〈
cos2 θ

〉
. It is also of interest to understand, how this steady-state is reached –

starting from arbitrary initial conditions.
Of particular interest is the limit of almost smooth spheres ηt ∝ εt−1� 1 [see the definition,

Eq. (5)]. While the decay of the rotational temperature R and the translational temperature T
takes place extremely slowly, that is, with a rate ∼ ηt � 1 [see Eq. (23) with r = R/T  A/B
in this limit], the relaxation of the temperature ratio, r = R/T as well as of the correlation
factor x ∼ (

〈
cos2 θ

〉
−1/3) occurs on the collision time scale. Indeed, in this limit one can write

using Eqs. (28), (29) and the definitions of the coefficients (24), (26),

dr

dτ
 −ηn(1− ηn)

(
r/r(0)∞

)(
r − r(0)∞

)
, (35)

with r
(0)
∞  A/B ∼ 1/η2t � 1 from Eq. (30). This implies that r relaxes to its steady-state value

exponentially fast with a rate ηn(1 − ηn) = O(1) (that is, on the collision time scale), while
both temperatures T and R continue to decay with the same small rate.
To analyse the relaxation of x(τ) to its steady state value, we use Eq. (29) and approximate

r(τ) by its steady state value r∞:

dx

dτ
= −a0 − a1x− a2x2 (36)
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Fig. 3. Steady-state value
〈
cos2 θ

〉
∞ (color coded) as a function of normal (εn) and tangential (εt)

coefficients of restitution. The stationary value of the temperature ratio r is superimposed through the
dashed contour lines. The solid lines indicate vanishing correlations (

〈
cos2 θ

〉
∞ = 1/3). The moment

of inertia q = 2/5 (upper panel) corresponds to homogeneous spheres. The middle and bottom panel
show the same data for q = 1/5 and q = 2/3, respectively.

where

a0 =
1

20

[
A(0) +B(0)r∞ + C(0)r−1∞

]

a1 =
1

20
A(1) +

1

20
B(1)r∞ −A− C +B(r∞ + r−1∞ )

a2 =
1

2
(C −Br∞) .

(37)



Granular Gases 2008: Beyond the Dilute Limit 101

 0.305

 0.312

 0.319

 0.326

 0.333

-1 -0.5  0  0.5  1
εt

 0.1

 1

 10

r

εn=0.9

εn=0.8

εn=0.6
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coefficient of tangential restitution εt. As previously, the solid lines indicate vanishing correlations and
the dashed lines follow constant values of the coefficient of normal restitution εn. Note the logarithmic
scale for the r-axis. The ragged border is an artifact of the limited numerical resolution.

The above equation with the initial condition x(0) = 0 is solved by

x(τ)− x∞ = −
x∞

1− tanhφ

[
1− tanh

(
τ

τrel
+ φ

)]
, (38)

with the relaxation time

τrel =
1

2

√
a21 − 4a0a2 (39)

and tanhφ = a1/
√
a21 − 4a0a2. Evaluating the coefficients for typical values of εt and εn, we

find that the relaxation of the correlation factor
〈
cos2 θ

〉
t
to its steady-state also occurs within

a few collisions per particle. This is illustrated in Fig. 5, where we plot the relaxation time τrel
given by Eq. (39).

We wish to stress here again, that the relaxation on the collisional time scale to the steady
state values applies only to the temperature ratio and the mean square cosine of the angle
between linear and angular velocity. For nearly smooth particles, εt → 1, the relaxation of the
rotational and translational temperatures is, nevertheless, a very slow process, which proceeds
with a small rate, tending to zero as εt → 1.
To demonstrate the existence of several time regimes we discuss in the following an instruc-

tive example. We initialize the particles with ω = 0 corresponding to r = 0. The collision
parameters are εn = εt = 0.8 so that the asymptotic value of the ratio of temperatures is
r∞ > 1. We expect r to monotonically increase as a function of time – and this is indeed
observed as shown in Fig. 6. Now, we can check our hypothesis that correlations are small for
values of r close to equipartition. If the hypothesis is correct, we should observe non-monotonic
behavior of

〈
cos2 θ

〉
t
. For short times the correlations should be large and of tennis ball type,

because grazing collisions are the most effective for spinless particles to gain angular momen-
tum. At intermediate times, when r ∼ 1, the correlations should be very small or vanishing. In
the asymptotic state with r∞ > 1, one should again observe finite correlations.
These three time regimes are clearly borne out in the time dependent correlations, shown in

Fig. 6: (a) In the short time regime (0 < t < 103) correlations are strong and 0 < r < 1. (b) At
intermediate times (103 < t < 105) equipartition holds approximately r ≈ 1 and correlations
are small or vanishing. (c) The steady state (t > 106) is characterized by r � 1 and finite〈
cos2 θ

〉
∞ < 1/3. The agreement between analytical theory and molecular dynamics is good

also for the time-dependent quantities.
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and of the ratio of temperatures r(t) = R(t)/T (t) to the steady state.

Dots: molecular dynamics data for 8000 particles, lines: analytical theory. To show that vanishing
correlations

〈
cos2 θ

〉
t
coincide with equipartition, we have chosen the vertical axes, such that the point

r = 1 on the right axis (blue) and the point
〈
cos2 θ

〉
t
= 1/3 on the left axis (red) have the same vertical

height as indicated by a horizontal line.

Figure 7 demonstrates that the moment of inertia of the particles does not change the evo-
lution of

〈
cos2 θ

〉
t
qualitatively. For the particular choice of the coefficients of restitution the

correlations are more pronounced for larger q = I/ma2 and fade with decreasing q. This how-
ever is not a general rule; depending on the coefficients εn and εt, this tendency may reverse.
The correlations between translational and rotational motion also have a noticeable, albeit

small impact on the basic characteristics of granular gases – the translational and rotational
temperatures. In Fig. 8 we present the time dependence of R(t)/R(0)(t) – the ratio of the
rotational temperature R(t) with correlations to the corresponding value R(0)(t) without corre-
lations. The respective ratio T (t)/T (0)(t) for the translational temperature is also plotted. Here
we choose the case of large r  24 (εn = εt = 0.8), which correspond to

〈
cos2 θ

〉
∞ < 1/3, that

is, for preferably perpendicular rotational and translational velocity. Figure 8 demonstrates that
the effect of the correlations on the granular temperatures R(t) and T (t) is indeed small. The
corresponding quantity r(t) = R(t)/T (t) is also not sensitive to these correlations. Moreover
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of time. Note that the deviation of r(t) from r∞ is always very small.

r(t) does not deviate noticeably from its steady-state value throughout the system’s evolution,
that is, |r(τ)/r∞ − 1| � 1, as shown in the inset of Fig. 8.

5.3 Beyond the second moment

A complete one-particle picture includes the distribution

W(cos θ, v, ω) = 1
N

N∑
i=1

δ(cos θ − cos θi)δ(v − vi)δ(ω − ωi). (40)

Since correlations are developed in collisions, one intuitively expects that particles with larger
velocities, that suffer stronger collisions, would show more pronounced orientational correla-
tions; we study these effects by binning the particles velocities.
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Fig. 9. The angular distribution f(| cos θ|) for the system of rough spheres with εt = 0.9, εn = 0.9
and q = 2/5 in the steady-state. Note that while there is no preferable angle between v and ω for slow
particles, correlations are clearly visible for fast particles favouring perpendicular linear and angular
velocities.

So far we discussed the correlation factor
〈
cos2 θ

〉
t
, which is a second moment of the distri-

bution function W(cos θ, v, ω). Let us now analyze the distribution function itself. Due to the
limited statistics of our numerical data we discriminate only between two classes of particles:
the class of fast particles comprising those particles whose linear velocity belongs to the set of
the 1/3 largest values and whose angular velocity belongs to the set of the 1/3 largest values.
The class of slow particles is defined correspondingly as the set of particles whose linear ve-
locity belongs to the set of the 1/3 smallest values and the angular velocity belongs to the set
of the 1/3 smallest values. In Fig. 9 we show the distributions f(| cos θ|) for the two classes in
comparison with the distribution for all particles using both methods, MD and DSMC. In both
cases we skipped the first 20 collisions per particle such that the ratio of temperatures, r, has
reached its steady-state value. For the MD simulation we used a system of N = 105 particles at
low density (filling factor <1%. Then we averaged over 200 snapshots in distance of 1 collision
per particle. In case of DSMC we used a system of N = 107 particles and made the statistics
based on a single snapshot. Both results agree very well. The angular distribution is almost
flat for slow particles and cannot be distinguished from the distribution of all particles (within
statistical accuracy). On the other hand the fast particles exhibit a nonuniform distribution
with a maximum around cos θ = 0. Physically this means that the angle θ between v and ω for
slow particles is uniformly distributed within the interval (0, π), while for fast particles it lies
preferentially around θ = π/2. In other words, for the particular choice of εt = 0.9 and εn = 0.9
the fast particles tend to behave like sliced tennis balls, with ω perpendicular to v.

6 Conclusions and outlook

We have analysed in detail the correlations between rotational and translational motion in a
granular gas of frictional particles. Under the assumption of molecular chaos and homogeneity
we have developed an analytical theory which accounts for the correlations

〈
cos2 θ

〉
t
in addition

to the rotational R(t) and translational T (t) temperature. We have also performed large scale
DSMC simulations as well as event driven simulations to study the evolution of a gas of rough
spheres and in particular the above correlations.
We observe that the gas of rough particles always relaxes to a steady-state with constant

correlation
〈
cos2 θ

〉
∞ and constant ratio r∞ = R(t)/T (t). While the relaxation of

〈
cos2 θ

〉
and r to their steady-state values happens on the collisional time scale, the evolution of the
rotational and translational temperature in the near-smooth limit εt → 1 is a slow process with
a vanishingly small rate ∼ ηt ∼ (1−εt)� 1. Physically, this may be explained as follows. In the
near-smooth limit the coupling of the rotational modes to the translational ones becomes very
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weak. The energy of the rotational motion of the particles is almost conserved in collisions and
the exchange of energy between the translational and rotational degrees of freedom becomes
very slow. Consequently the rotational temperature as well as the translational temperature
have a slowly decaying component, governed by this weak exchange of energies. However both
temperatures decay with the same slow timescale so that their ratio, r, is stationary - after it
has reached its steady state on the fast time scale of a few collisions. Simultaneously,

〈
cos2 θ

〉
t

relaxes to its steady state with a similar rate of the order of a few collisions. We conclude that
the relaxation of the temperature ratio, r, and the angular correlations is rapid, – independent
of the strength of the coupling (1−εt) as long as it is finite. Furthermore the correlations persist
up to a vanishingly small roughness and are absent only for perfectly smooth particles, εt = 1;
this requires a special care for the expansions around the smooth limit.
Our main results concern the correlation between the directions of rotational and trans-

lational velocity in the steady-state: The correlations depend sensitively on the values of
the coefficients of restitution and the moment of inertia; for most of the system parameters〈
cos2 θ

〉
< 1/3, implying that linear and angular velocities are preferably orthogonal, like in a

sliced tennis ball. Only for a small part of the parameter space
〈
cos2 θ

〉
> 1/3, which means

that v and ω are preferably parallel like in a rifled bullet; the manifold of vanishing correlations
(in εn, εt space) has seemingly zero measure. The correlations are more pronounced for strong
deviations from equipartition.
Our approach can be extended in several directions. In the simulations it is straightforward

to use more advanced models for the coefficients of restitution as functions of the impact velocity,
e.g. [38–41]. It would also be of interest to study the full one-particle distribution. Our results
already indicate that more energetic particles have stronger correlations, but a systematic study
has yet to be done. Furthermore, one expects to observe correlations not only in very dilute
gases, but also in rapidly moving denser systems. Our approximate analytical theory is based on
the assumption of homogeneity and the density only enters into the Enskog collision frequency,
which sets the time scale. Hence our results for the steady-state are independent of the density.
This cannot hold true in a rapidly moving dense system, yet we expect to observe correlations
as well. These could be analysed in a molecular dynamics simulation either for a driven [48] or
undriven system. Finally, the observed correlations may have important consequences for the
stability theory of dilute granular flows: they possibly alter the domain of stability of granular
system with respect to shear fluctuations – the main instability of granular flows of smooth
particles.

We thank Isaac Goldhirsch for interesting discussions; TK and AZ thank Timo Aspelmeier for help with
the MD simulations; TP acknowledges support by a grant from G.I.F., the German-Israeli Foundation
for Scientific Research and Development.

Appendix

A Correlation factor

We present the details of the analytical calculations, leading to the three self-consistent equa-
tions (23) and (25) for T (t), R(t) and b(t). First, we note that he computation of b(t) or

〈
cos2 θ

〉
t

is severely hampered by the denominator in Eq. (9). Fortunately one can carry out the calcu-
lations with the auxiliary variable

〈∆〉t ≡
2

3N

N∑
i=1

v2iω
2
iP2(cos θi) . (41)

Its relation to our set of dynamical variables can be established by essentially the same steps
as leading from Eq. (20) to Eq. (22):

30b(t)
T (t)R(t)

qm2a2
= 〈∆〉t

qm2a2

T (t)R(t)
. (42)
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In the case of vanishing correlations we have 〈∆〉t = 0. Positive (negative) values correspond to
a preference of a parallel (perpendicular) orientation.
Owing to the assumptions of spatial homogeneity and molecular chaos it suffices to consider

the phase space of only a single pair of particles (without loss of generality these shall be labeled
1 and 2). Integrating out the spatial degrees of freedom and using the definition of the pair
correlation function

N(N − 1)
∫
dr3 . . . drNgN (r1, . . . rN ) = n

2g2(r12), (43)

with n being the number density of the gas (e.g. [6]) we obtain

〈iL+∆〉t = ν N
∫
v1

∫
v2

∫
ω1

∫
ω2

(n̂ · v12)Θ (−n̂ · v12)

×
[
1 + b(t)v21ω

2
1P2 (cos θ1)

] [
1 + b(t)v22ω

2
2P2 (cos θ2)

] (
b̂12 − 1

)
∆, (44)

where n̂ is an arbitrary but fixed unit vector, ν = −8πna2g2(2a) and we used the shorthand
notations

∫
vi

≡
( m
2πT

)3/2∫
d3vi exp

(
−mv

2
i

2T

)
and

∫
ωi

≡
(
I

2πR

)3/2∫
d3ωi exp

(
−Iω

2
i

2R

)
. (45)

In the following we will drop the b2(t)-term stemming from the product of the two one particle
distribution functions f , assuming that it is small. This assumption is confirmed a posteriori
analytically, as well as in the numerical simulations. Hence, in what follows we consider only
terms first order in b(t).

The calculation of
(
b̂12 − 1

)
∆ is obviously rather involved and, thus, it needs to be broken

up to stay tractable. It is convenient to introduce relative integration variables

v ≡ v12/
√
2 , V ≡ (v1 + v2)/

√
2 , ω ≡ ω12/

√
2 , Ω ≡ (ω1 + ω2)/

√
2 . (46)

The term 〈iL+∆〉t can be broken up along two different principles. First, one can make the
dependence on b(t) explicit, that is,

〈iL+∆〉t =
〈(
b̂12 − 1

)
∆
〉(0)
+ b(t)

〈(
b̂12 − 1

)
∆
〉(1)
+O
(
b2
)
, (47)

where for any function F

〈F 〉(0) = ν
∫
v1

∫
v2

∫
ω1

∫
ω2

(n̂ · v12)Θ (−n̂ · v12) F (48)

〈F 〉(1) = ν
∫
v1

∫
v2

∫
ω1

∫
ω2

(n̂ · v12)Θ (−n̂ · v12)
[
v21ω

2
1P2 (cos θ1) + v

2
2ω
2
2P2 (cos θ2)

]
F.

(49)

In order to be able to exploit some further symmetries it is advisable to split up the last average
again,

〈F 〉(1) = 〈F 〉even + 〈F 〉odd (50)

where

〈F 〉even = 3
√
2

4
ν

∫
v

∫
V

∫
ω

∫
Ω

(n̂ · v)Θ (−n̂ · v)

×
[
(V ·Ω)2 + (V · ω)2 + (v ·Ω)2 + (v · ω)2 − 1

3

(
V2 + v2

) (
Ω2 + ω2

)]
F (51)
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involves only even powers of V,ω,Ω and

〈F 〉odd = 3
√
2

2
ν

∫
v

∫
V

∫
ω

∫
Ω

(n̂ · v)Θ (−n̂ · v)

×
[
(V ·Ω) (v · ω) + (V · ω) (v ·Ω)− 2

3
(V · v) (Ω · ω)

]
F (52)

in contrast involves only the odd powers of these quantities. Independently we can write

∆ = ∆A −∆B/3 (53)

where

∆A ≡
∑
i

(vi · ωi)2 and ∆B ≡
∑
i

v2iω
2
i . (54)

First we address the ∆A-part. Applying the collision rule to ∆A yields

(
b̂12−1

)
∆A = (δ · ω)2+(δ ·Ω)2+

1

q2a2
[(n̂× δ) · v]2+ 1

q2a2
[(n̂× δ) ·V]2−

√
2 (δ ·Ω) (v ·Ω)

−
√
2 (δ ·Ω) (V · ω)−

√
2 (δ · ω) (v · ω)−

√
2 (δ · ω) (V ·Ω) +

√
2

qa
(v ·Ω) (n̂× δ) · v

+

√
2

qa
(V · ω) (n̂× δ) · v +

√
2

qa
(v · ω) (n̂× δ) ·V +

√
2

qa
(V ·Ω) (n̂× δ) ·V

− 2
qa
(δ ·Ω) (n̂× δ) · v − 2

qa
(δ · ω) (n̂× δ) ·V (55)

and invoking the definition of δ, Eq. (4), we obtain

〈(
b̂12 − 1

)
∆A

〉(0)

= 2

(
2η2t − 2ηt +

η2t
q2
− ηt
q
+
2η2t
q

)〈
(v · ω)2

〉(0)
+ 2
ηt

q

(
ηt

q
− 1
)〈
(ω ·V)2

〉(0)

+ 2

[
2 (ηn − ηt)2 +

η2t
q2
− 2ηt
q
(ηn − ηt)

]〈
(n̂ · v)2 (n̂ · ω)2

〉(0)

+ 2
η2t
q2

〈
(n̂ ·V)2 (n̂ · ω)2

〉(0)
+ 2η2t a

2
〈
[(n̂×Ω) · ω]2

〉(0)
+ 2

η2t
q2a2

〈
[(n̂× v) ·V]2

〉(0)

+ 4

[
(2ηt − 1) (ηn − ηt)−

η2t
q2
+
1

2

ηt

q
− η

2
t

q
+
ηt

q
(ηn − ηt)

]
〈(n̂ · v) (n̂ · ω) (v · ω)〉(0)

− 2ηt
q

(
2ηt
q
− 1
)
〈(n̂ ·V) (n̂ · ω) (V · ω)〉(0) . (56)

The terms that vanish by symmetry are already left out at this point. The contributions to〈(
b̂12 − 1

)
∆A

〉even
have exactly the same form. For

〈(
b̂12 − 1

)
∆A

〉odd
one finds the following
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contributions

〈(
b̂12 − 1

)
∆A

〉odd

=

(
4η2t
q
− 4ηt
q
−4ηt

)
〈(v·ω)(V·Ω)〉odd− 4ηt

q
(ηn−ηt) 〈(n̂ · v) (n̂ ·V) (n̂ · ω) (n̂ ·Ω)〉odd

+
2ηt
q
(1− 2ηt) 〈(n̂ ·V) (n̂ ·Ω) (v · ω)〉odd −

4η2t
q
〈[(n̂× v) ·V] [(n̂×Ω) · ω]〉odd

+

[
4

(
ηt

q
− 1
)
(ηn − ηt) +

2ηt
q

]
〈(n̂ · v) (n̂ · ω) (V ·Ω)〉odd . (57)

Correspondingly, the ∆B-part may be written as

〈(
b̂12 − 1

)
∆B

〉(0)

=
2ηt
q

(
ηt

q
− 1
)
(2ηt − 1)2

〈
v2 (n×Ω)2

〉(0)
+
2ηt
q

(
ηt

q
− 1
)〈
V2 (n×Ω)2

〉(0)

+
2η2t
q2a2

(2ηt − 1)2
〈
v2 (n̂× v)2

〉(0)
+
2η2t
q2a2

〈
V2 (n̂× v)2

〉(0)
+ 4ηt (ηt − 1)

〈
v2ω2

〉(0)

+ 4
(
η2n − ηn − η2t + ηt

) 〈
(n̂ · v)2 ω2

〉(0)

+
8ηt
q

(
ηt

q
− 1
)(
η2n − ηn − η2t + ηt

) 〈
(n̂ · v)2 (n̂×Ω)2

〉(0)

+
8η2t
q

(
2ηt
q
− 1
)
(2ηt − 1)

〈
[(n̂× v) ·Ω]2

〉(0)

+
8η2t
q2a2

(
η2n − ηn − η2t + ηt

) 〈
(n̂ · v)2 (n̂× v)2

〉(0)

+ 2η2t a
2
〈
(n̂×Ω)2 ω2

〉(0)
+ 2η2t a

2
〈
(n̂×Ω)2Ω2

〉(0)

+
8η3t
q
a2
(
ηt

q
− 1
)〈
(n̂×Ω)4

〉(0)
+
8η4t
q2

〈
(n̂×Ω)2 (n̂× v)2

〉(0)
. (58)

The contributions to
〈(
b̂12 − 1

)
∆B

〉even
again are formally equivalent to the above expression.

This leaves us with

〈(
b̂12 − 1

)
∆B

〉odd

= −4ηt
q
(2ηt − 1) 〈(n̂ · ω) (n̂ ·Ω) (v ·V)〉odd +

8η2t
q
〈[(n̂× v) · ω] [(n̂×Ω) ·V]〉odd

− 8ηt
q
(ηn − ηt) 〈(n̂ · v) (n̂ ·V) (n̂ · ω) (n̂ ·Ω)〉odd . (59)

We have now reduced the problem to the tedious but straightforward calculation of a consider-
able number of averages. This task is best suited for a computer algebra system and thus we only
tabulate the results. To simplify the notation we introduce the abbreviations ν̃ ≡ ν

√
T/mπ,
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T̃ ≡ T/m, and R̃ ≡ R/I 〈
(v · ω)2

〉(0)
= −4ν̃T̃ R̃ (60a)〈

(V · ω)2
〉(0)
= −3ν̃T̃ R̃ (60b)〈

(n̂ · v)2 (n̂ · ω)2
〉(0)
= −2ν̃T̃ R̃ (60c)〈

(n̂ ·V)2 (n̂ · ω)2
〉(0)
= −ν̃T̃ R̃ (60d)〈

[(n̂×Ω) · ω]2
〉(0)
= −2ν̃R̃2 (60e)〈

[(n̂× v) ·V]2
〉(0)
= −2ν̃T̃ 2 (60f)

〈(n̂ · v) (n̂ · ω) (v · ω)〉(0) = −2ν̃T̃ R̃ (60g)

〈(n̂ ·V) (n̂ · ω) (V · ω)〉(0) = −ν̃T̃ R̃ (60h)〈
v2 (n̂×Ω)2

〉(0)
= −8ν̃T̃ R̃ (60i)〈

V2 (n̂×Ω)2
〉(0)
= −6ν̃T̃ R̃ (60j)〈

v2 (n̂× v)2
〉(0)
= −12ν̃T̃ 2 (60k)〈

V2 (n̂× v)2
〉(0)
= −6ν̃T̃ 2 (60l)〈

v2ω2
〉(0)
= −12ν̃T̃ R̃ (60m)〈

(n̂ · v)2 ω2
〉(0)
= −6ν̃T̃ R̃ (60n)〈

(n̂ · v)2 (n̂×Ω)2
〉(0)
= −4ν̃T̃ R̃ (60o)〈

[(n̂× v) ·Ω]2
〉(0)
= −2ν̃T̃ R̃ (60p)〈

(n̂ · v)2 (n̂× v)2
〉(0)
= −4ν̃T̃ 2 (60q)〈

(n̂×Ω)2 ω2
〉(0)
= −6ν̃R̃2 (60r)〈

(n̂×Ω)2Ω2
〉(0)
= −10ν̃R̃2 (60s)〈

(n̂×Ω)4
〉(0)
= −8ν̃R̃2 (60t)〈

(n̂×Ω)2 (n̂× v)2
〉(0)
= −4ν̃T̃ R̃ (60u)

〈
(v · ω)2

〉even
= −24ν̃T̃ 2R̃2 (61a)

〈
(V · ω)2

〉even
= −15ν̃T̃ 2R̃2 (61b)

〈
(n̂ · v)2 (n̂ · ω)2

〉even
= −6ν̃T̃ 2R̃2 (61c)

〈
(n̂ ·V)2 (n̂ · ω)2

〉even
= −3ν̃T̃ 2R̃2 (61d)

〈
[(n̂×Ω) · ω]2

〉even
= 2ν̃T̃ R̃3 (61e)

〈(n̂ · v) (n̂ · ω) (v · ω)〉even = −12ν̃T̃ 2R̃2 (61f)

〈(n̂ ·V) (n̂ · ω) (V · ω)〉even = −6ν̃T̃ 2R̃2 (61g)〈
v2 (n̂×Ω)2

〉even
= 6ν̃T̃ 2R̃2 (61h)
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〈
V2 (n̂×Ω)2

〉even
= 3ν̃T̃ 2R̃2 (61i)

〈
(n̂ · v)2 (n̂×Ω)2

〉even
= 6ν̃T̃ 2R̃2 (61j)

〈
[(n̂× v) ·Ω]2

〉even
= 6ν̃T̃ 2R̃2 (61k)〈

ω2 (n̂×Ω)2
〉even

= 3ν̃T̃ R̃3 (61l)
〈
Ω2 (n̂×Ω)2

〉even
= 7ν̃T̃ R̃3 (61m)

〈
(n̂×Ω)4

〉even
= 8ν̃T̃ R̃3 (61n)

〈
(n̂× v)2 (n̂×Ω)2

〉even
= 0 (61o)

〈(v · ω) (V ·Ω)〉odd = −20ν̃T̃ 2R̃2 (62a)

〈(n̂ · v) (n̂ · ω) (V ·Ω)〉odd = −10ν̃T̃ 2R̃2 (62b)

〈(n̂ ·V) (n̂ ·Ω) (v · ω)〉odd = −7ν̃T̃ 2R̃2 (62c)

〈(n̂ · v) (n̂ ·V) (n̂ · ω) (n̂ ·Ω)〉odd = −4ν̃T̃ 2R̃2 (62d)

〈[(n̂× v) ·V][(n̂×Ω) · ω]〉odd = 0 (62e)

〈(n̂ · ω) (n̂ ·Ω) (v ·V)〉odd = −2ν̃T̃ 2R̃2 (62f)

〈[(n̂× v) · ω][(n̂×Ω) ·V]〉odd = −5ν̃T̃ 2R̃2 . (62g)

B Correction terms for the temperatures

To calculate dT/dt = 〈iL+T 〉t one essentially proceeds along the same lines of reasoning as
detailed above. First of all, it is again advantageous to write the corrections to the Gaussian
distribution function explicitly, that is,

〈iL+T 〉t =
〈(
b̂12 − 1

)
T
〉(0)
+ b(t)

〈(
b̂12 − 1

)
T
〉(1)

(63)

where

3

4m

(
b̂12 − 1

)
T = ηt (ηt − 1) (n̂× v)2 + ηn (ηn − 1) (n̂ · v)2 + η2t a2 (n̂×Ω)

2

+ηt (2ηt − 1) av · (n̂×Ω) (64)

and

3

4m

(
b̂12 − 1

)
R =

η2t
q
(n̂× v)2 + ηt

(
ηt

q
+ 1

)
a2 (n̂×Ω)2 + ηt

(
2ηt
q
+ 1

)
av · (n̂×Ω) . (65)

The term
〈(
b̂12 − 1

)
T
〉(0)

is already known [25] and the only other contribution is

〈
(n̂×Ω)2

〉even
= 2ν̃T̃ R̃2 . (66)
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12. S.E. Esipov, T. Pöschel, J. Stat. Phys. 86, 1385 (1997)
13. J.J. Brey, D. Cubero, M.J. Ruiz-Montero, Phys. Rev. E 59, 1256 (1999)
14. P. Deltour, J.L. Barrat, J. Phys. I (France) 7, 137 (1997)
15. M. Huthmann, J. Orza, R. Brito, Granular Matter 2, 189 (2000)
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