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Granular rheology: A tale of three time scales
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We adapt statistical models of the physics of complex fluids to study the rheology of granular liquids. This
allows us to provide laws of granular rheology based on first principles, which compare well with previously
established phenomenological laws. In particular, the very successful law of μ(I ) rheology can be understood
within our model as the lowest order nontrivial Padé approximant of the macroscopic laws of rheology if
one takes into account processes taking place at three distinct types of time scales: Collisions occurring at
microscopic scales, collective motions like cage effect taking place at intermediate, mesoscopic scales, and
finally advection that takes place at the macroscopic time scale. Our model’s ability to describe granular physics
outside of the Bagnold scaling regime allows for a natural extension to the rheology of granular suspensions.
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I. INTRODUCTION

Granular fluids are omnipresent in our everyday life. The
study of their behavior is important for many industrial ap-
plications, but it is also crucial to the understanding of some
geological processes such as avalanches [1–5], pyroclastic
and debris flows [6–10], and sediment transport [11–13], as
well as gravisensors in plants [14,15], and specific animal
behavior [16].

Despite the absence of attractive force in the simplest
granular flows, three distinct flow regimes can be identi-
fied depending on the granular fluid’s density [17]: at low
density, collisions are relatively scarce, this is the gaseous
regime; at higher densities—typical packing fractions ϕ in
the range 0.4 � ϕ � 0.6—the grains experience very frequent
collisions, which significantly affect their qualitative behav-
ior, this regime is called the liquid regime; finally, close to
the jamming transition, interparticle friction becomes relevant
with deep consequences [18–21]. Importantly, in the interme-
diate liquid regime, some microscopic characteristics of the
granular particles become irrelevant [22], which allows for the
existence of universal laws. Most examples of granular flows
on Earth are in the liquid regime [17], this study focuses on
this latter one.

When a granular liquid is in the Bagnold flow regime—
which is generally the case when no external source of driving
power other than shear is present—its rheology is described
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by a phenomenological law, called the μ(I ) law, that has
been determined by fitting a huge data set including flows in
numerous geometries [23]. This law describes the evolution
of the effective friction coefficient μ of the granular liquid,
a quantity that qualifies how far from a simple liquid the
system lies—in simple liquids the effective friction is weak—
as a function of a dimensionless version of the shear rate,
called the inertial number I, which compares the shear rate
to the typical time scale of the motion of particles between
collisions. The granular liquid regime roughly corresponds to
the range 0.05 � I � 0.003. The limiting value correspond
respectively to the onset of the friction dominated regime
for the lower bound, and the breakdown of the continuum
medium approximation to describe the granular fluid for the
upper bound. Since then, the μ(I ) law has been tested against
even more data, from a wide variety of flow configurations
(from a simple shear experiment to the collapse of a granular
column), and has shown a remarkable agreement with the
experimental and numerical data both at the qualitative and
the quantitative level [24–37], even in the most recent studies
[22]. This formula still has one weakness however; it remains
so far only phenomenological [15], as the physical origin of
this simple rheology has not been found out yet.

In a recent study [38], it has been shown that models
inspired from the theory of complex liquids can be suc-
cessfully adapted to describe granular flows. More precisely,
it showed that the so-called granular integration through
transients (GITT) formalism—that describes the rheology of
frictionless dissipative hard spheres—provides a set of fun-
damental equations which, once numerically solved, yield
results showing a satisfactory agreement with the predictions
of the μ(I ) law, with parameter values compatible with the
experimental results. An explicit confirmation of this has been
given in a recent series of experiments [39]. However, the set
of GITT equations is very complex, and can be solved only
numerically. The purpose of this paper is to build simpler toy
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models in which the rheology of granular liquids is explained
as a competition between three time scales associated with the
relevant physical processes at play in the system—collisions,
shear advection and structural relaxation—occurring at the
respective microscopic, macroscopic and mesoscopic scales.
This model not only allows to retrieve the μ(I ) law within a
theoretical framework with a well identified set of hypotheses
as a lowest order Padé approximant of our macroscopic rhe-
ology, but also gives nontrivial predictions as for the behavior
of the effective friction coefficient μ—a central rheological
quantity—outside of the Bagnold regime where most experi-
ments are conducted, thereby allowing to understand a wider
range of rheological behaviors. As a result, the model can
be easily generalized to the case of high density granular
suspensions, which provides a model for the evolution of μ

in a regime where the search for such a law is under active
investigation [22,26,37,40–44].

The paper is organized as follows: in the first section, we
present the toy model and show that general properties of
granular liquid flows can be explained through the compe-
tition between two time scales. Then, in a second section,
we introduce the third time scale, derive the evolution of the
effective friction coefficient, and generalize the model to gran-
ular suspensions, identifying the various flow regimes through
the relative strength of the involved time scales. Finally, we
conclude.

II. TWO TIME SCALES TOY MODEL

Before entering the details of the toy model, let us first
recall how liquid state theory can be adapted to capture the
granular liquid phenomenology.

A. Granular integration through transients formalism

Let us consider a granular liquid consisting of N infinitely
hard particles, of restitution coefficient ε and granular temper-
ature T . For the sake of simplicity, we restrict ourselves to the
case of an incompressible planar shear flow.

The main challenge in describing the dynamics of granular
liquids is the fact that, because of the dissipative charac-
ter of the collisions, the system behaves generally not as a
Newtonian, but as a complex fluid, as we are going to show
below. This means that, depending on the conditions in which
the liquid evolves, the relation between the shear stress and
the strain rate may not be linear. Such an effect has to be
captured already at the level of the equations of motion that
govern the dynamics of the fluid. Moreover, since the type of
stress-strain rate relation depends a lot on internal, structural
characteristics of the liquid, the equation of the dynamics is
established at the level of functions of the internal structure of
the liquid, rather than at the level of the particle of fluid (in
which case the information about its internal content would
be lacking).

The dynamics of the system is taken to be given by the
mode-coupling theory (MCT), which accounts for the slow
down of the relaxation of correlation functions due to the cage
effect caused by clogging of particles at high density [45]. The
general form of the MCT equation is that of a Mori-Zwanzig
equation for the dynamical structure factor �q, which is noth-
ing but the normalized density correlation function in Fourier

space: �q(t ) = 〈ρq(t )ρ−q〉/Sq, Sq = 〈ρqρ−q〉 being the static
structure factor. The general form of this equation is

�̈q(t ) + νq�̇q(t ) + �2
q�q(t ) + �2

q

∫ t

0
dτ mq(t −τ )�̇q(τ ) = 0.

(1)

The detailed expressions of the various coefficients appearing
in this equation can be found in the Appendix D. We chose
not to reproduce them here since their lengthy expressions
do not really impact our reasoning. The first three terms of
Eq. (1) describe a simple relaxation of �q(t ) controlled by
the two characteristic frequencies νq and �q, as for simple
liquids. They express the weakening of the initial correlations
through time and space: As time grows, two particles that
were close to each other at an initial time will on average
be separated by an arbitrarily large distance, namely, after a
sufficient amount of time, particles in a liquid loose the infor-
mation about their neighbors. These are the terms dominating
at moderate enough densities where the granular medium
is in the Newtonian liquid regime. They describe the usual
interpolation between a collision-dominated, ballistic regime,
at short time scales, and a large time diffusive regime.

The last term accounts for the memory effects that arise
when the dynamics of the liquid drastically slows down at
high densities, and can be expressed in the frame of the mode-
coupling approximation. Physically speaking, because of the
slow down of the dynamics, particles remain, on average,
close together on a much longer amount of time, hence the
time-dependent term in the equation of motion. In the limit
where this last term dominates, the local information about
the structure of the neighbors is never completely blurred,
so that the density correlation function never decays com-
pletely. The expression of the quantities present in this term
are not needed in our derivation, and presented in Appendix D.
For details, the reader is referred to the previous papers on
GITT [38,46,47].

Although it has been shown that MCT tends to overesti-
mate the importance of cage-effect in the vicinity of the glass
transition, we are only concerned here with the dense liquid
regime. In particular, GITT assumes that shear-heating is al-
ways sufficient to make the granular material yield, so that we
never consider a true glass phase. The regime of parameters
under consideration is thus the one where the MCT has proven
to provide an accurate description of the physics at play.

Given the complexity of Eq. (1), the expression of �q(t )
is not known in general, even in very simple cases. To under-
stand the MCT picture of the glass transition, it is useful to
simplify this function thanks to the Vineyard approximation
[48] combined with a Gaussian ansatz for the self-interacting
part of the dynamical structure factor:

�q(t ) � Sq e−q2	r2(t ), (2)

where 	r2(t ) = 〈r(t ) · r(0)〉 is the mean-squared displace-
ment (MSD). Hence, in the liquid phase, most particles obey
a diffusive behavior of diffusion constant D, so that 	r2(t ) =
6Dt , and �q(t ) shows a simple exponential relaxation (see
Fig. 1). When going deeper into the supercooled regime,
however, the MSD develops a plateau: most particles are
trapped by their neighbors and cannot escape a small region,
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FIG. 1. Evolution of the shear stress σ as a function of the Peclet number both below the MCT granular glass transition ϕ � ϕg (yellow),
and above it (blue). Three inserts display the evolution of the dynamical structure factor �q(t ), computed by numerically solving the GITT
equations (3), in the three different flow regimes [Newtonian σ ∝ γ̇ (green), yielding σ ∝ γ̇ 0 (red), or Bagnold σ ∝ γ̇ 2 (blue)]. Each time, the
left panel has a time axis rescaled by the collision frequency ωc whereas it is rescaled by the shear rate γ̇ on the right panel. Different curves
in one insert correspond to different values of Pe smaller values of Pe corresponding to darker colors and larger ones to brighter colors. A
blue rectangle indicates on which panel the different curves collapse for the final decay of �q. If the collapse is in the left panel (Newtonian
regime), then ωc controls the decay; if it is in the right panel (yielding or Bagnold regimes), then advection controls the decay. The green
pannel corresponds to ϕ = 0.45 and Pe ∈ [10−9; 10−3], the red pannel corresponds to ϕ = 0.55 for the same values of Pe, and the curves in
the Bagnold regime have 0.45 � ϕ � 0.58. For all curves ε = 0.85.

this is the cage effect. It then follows from Eq. (2) that �q(t )
also develops a plateau (see Fig. 1). Furthermore, as long
as the system is not in the MCT glass phase, the plateau is
followed by a final decay at later times. Note that in this
picture the overall Sq factor does not play any major role.

Finally, �q(t ) is related to rheological quantities through
the integration through transients (ITT) formalism [49,50],
that can be used to express the shear stress σ and the pressure
P in the out-of-equilibrium steady state as integrals over the
values of �q(t ) at former times (see Refs. [38,47] for more
details):

σ = 1

60π2

∫ +∞

0
dt

1√
1 + (γ̇ t )2

3

∫ +∞

0
dq F1(q, t ),

P(γ̇ ) = P(γ̇ = 0)

+ 1

36π2

∫ +∞

0
dt

(γ̇ t )√
1 + (γ̇ t )2

3

∫ +∞

0
dq F1(q, t )

+ 1

12π2

∫ +∞

0
dt

(γ̇ t )√
1 + (γ̇ t )2

3

∫ +∞

0
dq F2(q, t ),

(3)

where γ̇ > 0 is the shear rate, and the kernels in the time
integrals are given as follows:

F1(q, t ) = −q4 γ̇ T

(
1 + ε

2

)
�2

q(−t )

S′
q(−t )S

′
q

S2
q

,

F2(q, t ) = −q3 γ̇ T

(
1 + ε

2

)
�2

q(−t )

S′
q(−t )

S2
q

(
S2

q − Sq
)
. (4)

In all these expressions, the dynamical structure factor is
evaluated in a time-dependent wave vector q(−t ). This is a
consequence of advection caused by the shear flow: the shear
flow imposes some average motion to the particles (with a
linear velocity profile in this particular case, see Fig. 2), which
is antagonistic to the cage effect. The time integrals therefore
reproduce the competition between the slow MCT relaxation
and the shear advection.

The limit ε → 1 can be taken in the above formulas to
recover usual expressions in nondissipative systems. There-
fore, although we will be mostly concerned with granular
flows in the following, this formalism encompasses the rhe-
ology of colloidal suspensions as a particular case. It must
be noted, however, that one of the most important differences
between granular flows, and those of colloidal suspensions
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FIG. 2. The left part of the figure recalls the shape of the dynamical structure factor’s evolution with time. On the left panel, the time axis
is rescaled by ωc, whereas on the right panel, it is rescaled by γ̇ . This allows to identify the process that controls the decay of �q: collisions
for the most dilute flows under the MCT granular glass transition (at ϕ = ϕg), and advection for denser flows above the transition. On the right
side, the flow geometry is recalled, and the evolution of μ with Pe is displayed for various values of ϕ between 0.45 and 0.58, for a restitution
coefficient of ε = 0.85. Depending on the process controlling the decay of �q, the Pe → 0 limit of μ is either 0 or a finite value. The Bagnold
scaling can be observed at the level of the endpoints of the curves, for the highest values of Pe (see Ref. [47] for more details). The color code
on the inserts is the same as the one used on Fig. 1.

is the presence of dissipative collisions in the former. As a
result, the flowing out-of-equilibrium steady state is defined
by a balance between the power injected in the system, and the
power dissipated by the collisions, which can be summarized
by the following balance equation:

σ γ̇ + PD = n�dωcT, (5)

where n is the liquid’s density, ωc is the collision frequency
(the collision frequency can be estimated for example from
the packing fraction by using the Enskog expression ωc =
24ϕχd−1√T/π [51] where χ is the contact value of the pair
correlation function and d is the diameter of the particles.
Numerical estimates in this work, use the P[4/5] [52] ansatz
to estimate χ , see Ref. [38] for more details), and �d =
(1 − ε2)/3 is a dimensionless dissipation rate (see Ref. [47]
for more details). Its expression is not important here. Finally,
PD is a generic driving term, that encompasses all sources of
power injection other than shear heating. Equation (5) defines
the granular temperature T .

Let us emphasize here that T is a kinetic temperature,
defined from the second cumulant of the velocity fluctuation
probability distribution, and not a thermodynamic one. In par-
ticular, due to their size, granular particles do not thermalize
with their environment, even when they are in suspension.
This point is particularly important when comparing formulas
outside of the Bagnold regime in the elastic limit, where

contrary to their granular counterpart, colloidal suspension
involve the thermodynamic temperature (even if the formulas
are the same, their physical meaning is different).

All in all, in GITT the rheology of granular liquids is
described in terms of integrals over the advected dynamical
structure factor �q(t )(t ), whose dynamical evolution is de-
scribed by MCT, combined with a power balance equation (5)
that defines the steady state. This method has proven suc-
cessful to describe the rheology of dry granular liquids [38].
However, the involved structure of the equations makes it
difficult to understand precisely how the underlying physical
processes at play impact the end result.

B. Reduction of the ITT integrals

One of the main sources of complexity in the GITT equa-
tions is the coupling between the time and wave-number
dependencies of�q(t ); this can be simplified. Indeed, in the
MCT, the glass transition is described as a bifurcation process
characterized by a number of universal quantities describing
the dynamics in the vicinity of the plateau of �q(t ). It is
thus possible to build a class of models, called schematic
models in which equivalent bifurcations apply to a function
�(t ) that is only a function of time. Consequently, the MCT
equation Eq. (1) can be highly simplified, what allows for
analytical studies of some of the asymptotic properties of �(t )
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when t is very large. Such approach has for example been
successfully applied to the rheology of colloidal suspensions
[49,53–56], where it was shown that the relaxation from the
plateau is dominated by the shear advection term.

However, even in the simplest schematic MCT models the
full time evolution of � does not have a simple analytical
form. Consequently, we decided in this work to go even one
step further and replace �q(t ) by a simple relaxation function
exp(−�t ), where 1/� is the time scale associated with the
structural relaxations, namely the scale controlling the decay
of � to 0. In the liquid phase, � is typically related to the time
scales appearing in the first three terms of Eq. (1), whereas
when going closer to the MCT glass transition, the memory
terms are more and more important and � → 0. This is clearly
depicted on Fig. 1: In the low density, Newtonian regime, the
decay of � follows a simple exponential decay with a typical
rate given by the collision frequency ωc; at larger densities,
however, the decay occurs on larger time scales, namely �

and ωc decouple. As we will show throughout this paper, the
drastic simplification of our toy model is sufficient to capture
the leading behavior of the system.

By taking away the q-dependence of �, we also simplify
all the wave-vector dependencies in the integrals in Eq. (3),
which reduce to mere constants. However, the term appearing
in the integrand is not �q(t ) but �q(−t )(t ), and although we
can safely ignore the wave-vector dependence of �q(t ), the
effect of advection is crucial insofar as it accounts for the
effect of shear which is required to liquefy the system at high
densities. Let us apply the Vineyard formula to �q(t )(t ) (in
the following expression, we have used the expression of the
advected wave vector’s norm q(t )2 = q2(1 − (γ̇ t )2/3) valid
for the simple shear flow):

�q(t )(t ) � Sq(t )e
−q(t )2	r2(t ) = Sq(t )e

−q2	r2(t )e−q2(γ̇ t )2	r2(t )/3.

(6)

The time dependence appears on two levels: (i) in the static
structure factor, but this effect is very mild compared to the
drastic evolution driven by the mean-squared displacement,
and can be safely neglectedat our level of approximation
[57]; and (ii) at the level of the Gaussian factor. The formula
Eq. (6) is useful to understand the effect of shear advection
on �q(t ): Close to the MCT glass transition, �q(t ) develops
a plateau that extends over many decades in time. However,
it is not a mere function of time, it also has a spatial struc-
ture which typically decays like a Gaussian over a length
given by the MSD. When the granular medium is sheared,
the advection introduces an additional time-dependence in the
spatial structure of q(t ), and therefore of �q(t )(t ). Thus, even
if the MSD were constant in the fictitious, quiescent state,
the large time behavior of the real system would always be
�q(t ) → 0, namely, it would be shear molten. It should be
understood that, even though Eq. (6) is strictly speaking only
valid for low enough values of q, the rapid exponential decay
of the integrand always ensure that the large q sector never
significantly contributes to the integral.

In our toy model, � has no q-dependence anymore, but
shear melting is required. Therefore, we choose to replace
the advected �q(t )(t ) by the product of �(t ) and a Gaussian
screening factor exp(−(γ̇ t )2/γ 2

c ), where γc is a typical strain

scale of the system. Note that this is a bit different from the
choice made by Fuchs and Cates in their study of colloidal
suspensions [53], where the advection was accounted for in
the schematic model by a factor with a Lorentzian rather than
Gaussian prefactor. As we are going to show in the following,
the main role of the advection factor is to provide a cutoff
to the time integral at a typical scale 1/γ̇ . At our level of
approximation, the precise form of this cutoff function is not
important. We chose to keep the Gaussian profile because it
yields simpler expressions for the ITT integrals, but as we will
see, it is neither more nor less precise than the Lorentzian one.

In a nutshell, the two-time-scales toy model captures the
physics of the relaxation of the density correlation function �.
As we argued above, this decay can occur via two competing
channels corresponding to two, different, well identified phys-
ical processes: The first channel is the structural relaxation
with a rate �, corresponding to collective motion in the fluid,
the other one is the advection channel, of rate γ̇ , correspond-
ing to the macroscopic motion forced by the environment.

A word of caution is in order here regarding the Gaussian
screening factor. With this expression, the departure of �(t )
from the plateau is quadratic in γ̇ , and not linear as most
studies in the mode-coupling approximation show. It must be
understood that, whereas most of these studies focus on the
evolution of �(t ) very close to the plateau, we need here, to
the contrary, to give an approximation of �(t ) valid on the full
scale of its evolution. In this context, a Gaussian profile that
is not the most precise very close to the departure from the
plateau but gives a shape consistent with the full evolution of
�(t ) is a good approximation (namely, it is less precise than
the schematic models close to the plateau, but more precise at
the level of the global shape of �). As can be seen on Fig. 1
on the red panel, the decay from the plateau, when driven
by advection, is neither exponential nor Gaussian, but much
faster when examined on a global scale. Last, as we already
argued, the leading-order behavior of the rheology is given
by the location of the decay, and not the precise shape of the
decaying function, since its role is always that of an integrand.

Finally, we can simplify the fundamental ITT integrals ap-
pearing in Eq. (3), noted K0 and K1 in the following. The fact
that we reduced the q-dependence leads to drastic simplifica-
tions (the square root term, even though seemingly dependent
on time only originates from the wave-vector structure [47].
It has therefore been neglected as well; it is to be noted that
its profile decreases anyway much slower than the Gaussian
factor coming from advection):

K0 = γ̇

∫ +∞

0
dt

∫ +∞

0
dq

F1(q, t )√
1 + (γ̇ t )2/3

= γc
√

π

2
√

2
F

(
�γc

γ̇
√

2

)

� γ c

2

1

1 + γ c/Wi
, (7)

where γ c = √
π/2γc, Wi = γ̇ /� is the Weissenberg number,

and F (x) = erfc(x)ex2
. In this computation, the second line

corresponds to the exact evaluation of the integral (let us
remind that the integrand includes approximations). The result
of this evaluation is not very useful for a comparison with
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experiments. Besides, a number of details of the variation of
this function are not needed to give a faithful representation
of the data. Therefore, we reduced, in the third line, the ex-
pression of this function to its lowest order nontrivial Padé
approximant, giving a much more easy to use rational fraction.
As we are going to see, this rational fraction form is largely
sufficient for the need of our present study. It should however
be kept in mind that this last step is by no mean an obvious
one, since the study of sheared granular liquids in more com-
plex flow geometries [58], or the study of dynamical yield
surfaces [59], which are also outputs of the model, require a
higher degree of precision. What we would like to put forward
here is that the toy model, however simple, gives a systematic
way of building approximations that can then be tailored to
the needs of the situation under study.

Similarly,

K1 = γ̇

∫ +∞

0
dt (γ̇ t )

∫ +∞

0
dq

F1(q, t )√
1 + (γ̇ t )2/3

� γ 2
c

4

1

1 + γ c/Wi
. (8)

At this level of approximation, there is no major difference
between the two types of ITT integrals. Details about the
derivation of these formulas can be found in Appendix A.

All in all, the complexity of GITT equations can be reduced
to a simple function of one parameter, Wi, capturing the
competition between the structural relaxation time scale 1/�

and the shear advection time scale 1/γ̇ for the control of the
relaxation of the two-point density correlation function. This
constitutes the two time scales toy model.

C. Rheology as a competition between two time scales

Let us examine the evolution of the shear stress σ in the
different flowing regimes, to check a posteriori the quality
of the approximations presented above by comparing our re-
sults to the existing literature. From Eq. (3), it is basically
proportional to K0. In our toy model, it can therefore be
expressed as

σ = σy

1 + γ c/Wi
, (9)

where σy is some constant that accounts both for the prefactor
in Eq. (7), and a compensation for the q-dependent terms in
the ITT integral. The competition between the times scales in
Wi generates different flow regimes:

(i) � � γ̇ : structural relaxation dominates.
In this regime, Wi � 1, therefore:

σ � σy Wi

γ c
= η γ̇ , (10)

which describes the flow of a Newtonian fluid of viscosity
η = σy/(γ c�).

In the language of our toy model, in this regime the
shear time scale is much larger than the scale of structural
relaxation. Consequently, the relaxation time depends only on
the characteristic quantities of the liquid, and does not depend
on the shear rate γ̇ . As an aside, it means that it does not
depend either on the Peclet number Pe = γ̇ /ωc, that compares

the, macroscopic, advection time scale, to the microscopic,
ballistic motion time scale. This behavior can be checked to
show up in the numerical solution of the full GITT equa-
tions displayed in Fig. 1 in the green insert: on the left panel,
the time axis is made dimensionless through the collision
frequency ωc ∝ � (as discussed below, this proportionality
only holds in the Newtonian regime, because at low densities,
the scale of ballistic motion, or collisions, fixes the rate of
decay of the density correlation function, a relation that breaks
down at higher densities where strongly collective motion are
at play), all curves collapse, whereas it can be checked on the
right panel, where the dimensionless time is γ̇ t that different
Peclet numbers are represented.

A full account of the properties of the steady state needs
to combine both Eqs. (9) and (5). Injecting Eq. (9) into
Eq. (5) leads to an expression T = f (γ̇ , PD), where f is some
function. Since PD is left unspecified, we can use it to tune
the value of T (γ̇ , PD), so that in practice, T and γ̇ can be
considered as independent variables. Physically, this amount
to adjusting the driving of the granular material to reach a
desired steady state at a given shear rate and packing fraction.
This is also the origin of the third time scale compared to the
well-known μ(I ) law: In the Bagnold regime, the rheology
depends on a unique dimensionless number, I, but it is also
the regime where PD = 0; Thus, adding a nontrivial driving
power (or additional source of dissipation) introduces a new
energy scale into the problem.

(ii) γ̇ � �: advection dominated regime.
Here, we must discriminate two different scenarios, be-

cause there are two separate causes that can lead the system
into such a regime.

(1) � → 0: yielding regime.
If ϕ > ϕg, where ϕg is the location of the MCT granular

glass transition in the equivalent unsheared system [60,61],
then the structural relaxations become infinitely slow (note
that since the system is always shear molten, the existence
of a true MCT glass transition, or an avoided transition with
no diverging time scale, is irrelevant; As a matter of fact, as
long as � � γ̇ , γ̇ fixes the scale of the decay of � toward
0, independently of the existence of another process that
may cause a decay at later time in the unsheared system,
otherwise, the advection channel is the only relaxation
channel). Hence, whatever the value of γ̇ , the condition
Wi � 1 is always respected. In that case,

σ � σy, (11)

which is the behavior of a yielding material of yield stress
σy. Let us point out that in virtue of the discussion above,
even though Eq. (3) yields σy ∝ T , using the additional
degree of freedom PD, T and γ̇ can be considered inde-
pendent. Thus, Eq. (11) genuinely corresponds to a shear
stress independent of the shear rate.

The corresponding evolution is displayed in Fig. 1 in
the red insert. Comparing the left and the right panels
shows that the final relaxation time (the one corresponding
to the decay of � to 0) is entirely determined by the
Peclet number (namely by γ̇ ), and does not depend on the
collision frequency.

(2) Strong shear rate regime: Bagnold scaling.
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Even far away from the MCT granular glass transition,
it is always possible to reach the regime in which γ̇ � � if
the system is sheared strongly enough. The strongest shear
regime corresponds to the case where PD = 0 in the power
balance Eq. (5), when all the injected energy is due to the
shear, and the only source of dissipation is the dissipative
collisions. In that particular case, the power balance Eq. (5)
takes a form called the Bagnold scaling equation [62]:

σ γ̇ = n�d ωcT . (12)

Crucially, this means that PD cannot be used anymore
as an adjustable parameter, and T becomes a function of γ̇ .
As a result, although we are still in an advection dominated
regime, Eq. (11) must be amended to account for the fact
that σy ∝ T is now a function of γ̇ . To investigate this, it is
thus interesting to rewrite it as σy = σ̂y T , where σ̂y is the
part of the shear stress that depends neither on T , nor on γ̇ .

Since ωc ∝ √
T , Eq. (12) yields T ∝ (σ γ̇ )2/3. Equa-

tion (9) thus yields

σ = Bγ̇ 2, (13)

where B = σ̂ 3
y /�2

d is the Bagnold coefficient of the granu-
lar fluid.

Due to power balance Eq. (12), T ∝ γ̇ 2, and since ωc ∝√
T , the Peclet number Pe = γ̇ /ωc, playing the role of a

dimensionless shear rate, becomes constant and saturates.
Note that while σy has a very weak dependence on

ε, the dissipation rate typically behaves as �d ∝ (1 − ε2)
[63], so that B is singular in the elastic limit. This should
not come as a surprise. As a matter of fact, if the elastic
limit is smooth for the Newtonian and the yielding regimes,
then the Bagnold regime requires the particular balance
Eq. (12), which can only hold if collisions dissipate energy,
something impossible in the elastic case. Said otherwise,
while the yielding and Newtonian regimes of rheology can
be compared to their equivalent in colloidal systems—up
to the definition of the temperature, as argued above—the
Bagnold regime is a specificity of granular systems.

The evolution of �q in GITT in the Bagnold regime
is represented in the blue insert in Fig. 1. As expected in
an advection dominated regime, the final relaxation time is
controlled by γ̇ .
Finally, following the reasoning of Fuchs and Cates [53]

in the case of colloidal suspensions, we can understand the
toy model’s result Eq. (9) in the context of the viscoelastic
Maxwell model. There is one subtlety related to the fact that
the toy model involves not only one, but two time scales:
τ = 1/� related to the structural relaxations, and τγ = γc/γ̇

related to advection. We can use them to build a total time
scale τM through 1/τM = 1/τ + 1/τγ , so that Eq. (9) can be
interpreted as the shear stress of a Maxwell material of shear
modulus G(t ) = G∞e−t/τM , with a initial shear modulus G∞
related to the yield stress through the following law:

σy = G∞γ c. (14)

Despite a different choice of advection term in the ITT inte-
grals (Gaussian instead of Lorentzian), it is interesting to note
that the nonlinear Maxwell model of Ref. [53], which proved
successful in the description of the rheology of colloidal sus-
pensions, is recovered as a particular case of our toy model in

the appropriate elastic limit ε → 1 (details in Appendix B).
All in all, our toy model is able to describe all the known
scaling regimes of granular liquid flows.

A summary of the two-time-scales toy model can be found
in Fig. 1. The dominating time scale (1/� or 1/γ̇ ) determines
whether collisions (Wiu � 1) or advection (Wi � 1) control
the final decay of �(t ) to 0. Inserts show which time scale
controls the decay in three flow regimes.

III. EFFECTIVE FRICTION

A. Presentation

Granular liquids are complex liquids that share some be-
haviors with liquids, and other with solids. A useful way to
quantify how far away from these two limits the system lies,
is to define its effective friction coefficient μ. This coefficient,
inspired from soil mechanics, describes the ability of the
system to yield in a Mohr-Coulomb fashion [2]. By analogy
with the Coulomb criterion of solid friction, μ is the ratio of
the tangential constraint applied to the liquid over its normal
constraint. In our case, it is simply μ = σ/P. A small value of
μ means that the system yields very easily, much like a liquid,
whereas as μ gets closer to 1, the behavior becomes more and
more solidlike.

To determine μ in our toy model, we need to determine
the pressure. Following Eq. (3), we can decompose it as a
sum of two types of terms: the unsheared pressure P(γ̇ = 0)
which does not depend on advection and is therefore a mere
constant (denoted P0) in our toy model, and the ITT correction
given by the two next terms (see Ref. [38] for more details).
As discussed before, since the q-structure has been reduced
to mere constant prefactors, both terms have the form of K1

given by Eq. (8). The pressure can thus be written in a form
very similar to σ :

P = P0 + P1

1 + γ c/Wi
. (15)

In particular, deep in the liquid phase in the regime dominated
by �, the ITT correction to the pressure is very weak, whereas
it is stronger in the yielding regime, a feature consistent with
the GITT numerical data [38].

Finally, the effective friction coefficient can be written as
follows:

μ = M1

1 + M2/Wi
, (16)

where M1 = σy/(P0 + P1) is the limit of μ in the yield-
ing regime and M2 = γ c · P0/(P0 + P1). Hence, in the �-
dominated regime, μ → 0, whereas in the yielding regime,
μ reaches a constant nonzero value independent of γ̇ (the
order of the limits is crucial here; indeed, since the yielding
regime is advection dominated, the inequality γ̇ � � holds
in any case; As a result, even when γ̇ → 0, Wi � 1 so that
μ � M1). This is all the more interesting as it has been shown
that pyroclastic flows have a much lower μ than typical val-
ues predicted by the μ(I ) law. Indeed, some processes have
been suggested to explain that such flow are not in the Bag-
nold regime where the μ(I ) law applies [8]. Our toy model
confirms that some parameter ranges (corresponding to the
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FIG. 3. Evolution of μ with Pe computed numerically with GITT
(blue circles). The red curve is the result of the fitting of the data with
our toy model Eq. (17). All curves correspond to ε = 0.85.

Newtonian flow regime) are compatible with arbitrarily low
values of μ.

The predictions of the toy model can be tested against the
evolution of μ with the Peclet number Pe = γ̇ /ωc computed
with GITT (see Fig. 2). The following behavior is observed
in the numerical data: For ϕ � ϕg, μ asymptotically goes to
0 when Pe decreases, whereas it saturates to a finite value
around 0.4 for ϕ > ϕg. This is consistent with the prediction of
the toy model: below the MCT granular glass transition, � is
finite, and when decreasing Pe, it is always possible to reach
the regime � � γ̇ where μ can be arbitrarily small; above
ϕg however, the structural relaxations become infinitely slow,
and the system stays in the yielding regime where Wi � 1.
At this order of approximation, our two-time-scales toy model
therefore reproduces exactly the behavior observed in GITT.

This result is a bit disturbing though since it means that
in the yielding regime, μ does not depend on Wi. While this
seems satisfactory to describe the qualitative global tendency
of the evolution of μ with Pe, as can be seen in Fig. 2, when
looking at individual curves like in Fig. 3, μ clearly depends
on Pe even in the yielding regime, even if its variations are
much milder (they are all the weaker that ϕ is large).

The origin of this is easy to understand: in the GITT curves,
the behavior of μ is studied when Pe → 0. In the Newtonian
regime, � ∝ ωc (no collective motion effect), so that Pe ∝ Wi
and the identification between the toy model and the GITT
data is easy to make. In the yielding regime however, Wi � 1
however small Pe is. This is because in this regime, the plateau
in the time evolution of � is very long (see the upper-left
quadrant on Fig. 2), the internal dynamics is very slow due
to a strong cage effect, and the condition � � γ̇ can be main-
tained even at very low values of γ̇ . The identification between
Wi and Pe therefore breaks down in this regime. Indeed, as
pinpointed in Ref. [38], the rheology of granular liquids is not
defined in terms of one, but two dimensionless ratios of time
scales: the Peclet number Pe, and the Weissenberg number
Wi = γ̇ /�.
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Pe
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I

FIG. 4. Evolution of the inertial number as a function of the
Peclet number on our dataset (all the values of Pe and I presented in
all regimes in all the other figures in the paper).

Before detailing the three-time-scales toy model, we must
give a word of caution: In our derivation, it appeared that the
effective friction coefficient μ, expressed in terms of a com-
petition between two time scales within the two-time-scales
toy model does not describe well the μ(I ) law. There seems
to be a paradox here since by definition, I is a ratio of two
time scales, so in the Bagnold regime, μ does depend on the
competition of two time scales only. However, a more careful
analysis of this result shows that the Weissenberg number Wi,
used in the two-timescales toy model is not a good analog to
I, it is the Peclet number that is. Indeed, as one can see on
Fig. 4, the inertial number I and the Peclet number Pe are
basically proportional to one another. This comes from the
fact that the free-fall time scale tff used in the definition of I is
a typical time scale of the ballistic motion of particles, so that
tffωc � 1.

Said otherwise, a proper account of the μ(I ) rheology
requires a toy model for the general rheology with three differ-
ent time scales (expressed in terms of Pe and Wi), such that in
the Bagnold limit, one of the time scales (t� in Wi, and not ωc

in Pe) decouples and the Bagnold rheology can be expressed
as a competition between two of the three time scales only.

B. Three-time-scales rheology

As stated before, the rheology of granular liquids de-
pends on two dimensionless numbers: Pe that describes the
competition between ballistic motion and advection, and Wi
that in that case describe the competition between structural
relaxation (including the cage effect) and advection. A conse-
quence of the existence of three fundamental time scales—for
collisions, advection, and structural relaxations—can be seen
on the time evolutions of �q(t ) (see Figs. 1 and 2). In the New-
tonian regime, the cage effect is weak, most of the physics is
captured by the competition between collisions and advection,
and �q(t ) follows a simple decay. Closer to the MCT granular
glass transition, the time scales associated with collisions and
structural relaxations separate and �q(t ) follows a two-step
decay.
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Changing from a one-step to a two-step decay can be
done simply by assuming that �(t ) does not follow a simple
exponential relaxation, but is rather a combination of two such
processes: �(t ) = λ(1) exp(−�(1)t ) + λ(2) exp(−�(2)t ), with
�(1) associated with the short-time ballistic process, whereas
�(2) is associated with the long-time decay process (structural
relaxations in that case, at least when they occur on a scale
decoupled from that of ballistic motion). The choice of an
exponential form for the first step of the decay ensures the
consistency of the model in cases like the Newtonian model
where �(1) = �(2) and the decay occurs in one step (see
Fig. 1). By linearity of the ITT integrals (because the term
involved in the integral is �2 and not �, the operation is not
rigorously linear, but as in our model, we either face the case
�(1) = �(2) or �(1) � �(2), the mixed term does not play any
meaningful role in the determination of the shape of �), it can
be checked that the resulting shear stress can be decomposed
as σ = σ (1) + σ (2), each σ (i) having the form Eq. (9), with
two respective time scales ratios �(i)/γ̇ . Following the above
discussion, the first ratio is proportional to 1/Pe and the sec-
ond one to 1/Wi. The same procedure can be applied to P
and to μ.

The success of the two-time-scales toy model hints that
the long-time relaxation process is associated with the more
drastic variations of the rheological quantities (such as the
shift from a μ → 0 limit to a finite value of μ when Pe
� 1). In the cases where the decay of � is done in two well
separated steps, the changes associated with the first step of
the decay are milder, subleading variations.

We therefore split μ, in this fashion, introducing two sepa-
rate contributions μ(1) and μ(2) coming respectively from the
short and the long time scales controlling the decays,

μ = μ(1) + μ(2) = M (1)
1

1 + M (1)
2 /Pe

+ M (2)
1

1 + M (2)
2 /Wi

. (17)

As can be seen in Fig. 2, the short-time decay is completely
fixed by ωc. In the yielding regime, the long-time decay
becomes infinitely large, so that � = 0, and Wi � 1. Our
previous paradox is therefore solved: μ does possess a contri-
bution from yielding that stays constant and fixes the leading
behavior, but it also encompasses a second term, due to the
short-time decay, which is still of form Eq. (16), and explains
the remaining subleading variation.

This model is tested against GITT data in Fig. 3. In the
Newtonian regime, the two time scales collapse on each other,
Pe ∝ Wi, and μ has the form of Eq. (16). When going closer
to the ideal granular glass transition, the two time scales
separate, as in Fig. 2, and μ(2) gets closer to a constant, while
μ(1) still depends on Pe. Fitting the GITT data with such a
model yields the red curves in Fig. 3. The agreement between
the numerical data and the model is satisfactory.

C. μ(I) regime

In the previous section, we did not discuss the last regime
of dry granular flows: the Bagnold regime. In this regime it
has been established experimentally that μ follows a phe-
nomenological law, and depends on only one dimensionless
quantity, the inertial number I = γ̇ d

√
n/P—n being the par-

ticle’s density and d their diameter—which can be understood

as the ratio of two time scales [26]: the advection time scale
tγ = 1/γ̇ , and the time scale of free-fall in a pressure field P,
tff, which is the characteristic scale of the ballistic short time
motion (an explicit derivation can be found in Ref. [26]). The
μ(I ) law writes

μ(I ) = μ1 + μ2 − μ1

1 + I0/I
, (18)

where I0, μ1, and μ2 are adjustable parameters. This law has
been tested in a wide variety of flow geometries [13,23,31],
and has proven to be successful, even in very recent exper-
iments [15,22]. This is crucial insofar as it means that the
law Eq. (18) provides knowledge about intrinsic properties of
granular liquids.

Let us examine the μ(I ) law in the light of our toy model.
As explained before, in the Bagnold regime, the shear rate
is strong enough so that the system lies in the advection
dominated regime Wi � 1. Therefore, the long time scale
ratio �/γ̇ is very small, and the contribution μ(2) is roughly
constant. This is consistent with the fact that in typical exper-
iments, the variation of μ over the whole I range is mild—it
typically varies between 0.4 and 0.65. The subleading varia-
tions thus come from the change of short-time decay scale,
that can be observed in Fig. 1.

As we argued above, by definition, Pe is the ratio of the
time scale associated with the short-time motion of the par-
ticle, which in this case can be identified with tff, with the
advection time scale. Therefore, Pe ∝ I, as can be observed
on the numerical data obtained by solving the full GITT equa-
tions displayed on Fig. 4. This argument is only qualitative,
but a full demonstration of the link between the two quantities
is tedious due to the presence of P in I, as no simple approx-
imation of the equation of state is known to hold in all the
studied regimes.

Let us now examine a bit more in details the different
regimes. The behavior of the system is controlled by three
independent time scales: the advection time scale tγ , the free
fall time scale tff, and the scale of the structural relaxations
t� . In the Bagnold regime, the final relaxation is always con-
trolled by advection, therefore tγ � t� . Hence, three different
regimes can be defined depending on the values of tff:

(i) tff � tγ � t�: Quasistatic regime.
In this regime, tff is the smallest time scale, I = tff/tγ � 1.

From what we established before, Wi � 1 and Pe � 1. The
effective friction, given by Eq. (17) is thus dominated by the
long-time contribution μ(2). By analogy with Eq. (18), we can
identify

μ � μ(2) � M (2)
1 = μ1. (19)

This corresponds to the black curve in Fig. 2, where the
two relaxation time scales are clearly separated.

Let us emphasize that our results only hold for moderately
low values I � 10−3, beyond that interparticle friction plays
the dominant role, and defines the physics of the jamming
transition [18,19,21,42].

(ii) tγ � tff � t�: μ(I ) regime.
This is the regime where μ varies between its two limiting

values μ1 and μ2. In this regime, the two relaxation time
scales get closer and closer to each other until they finally
merge into one. The decay of � is controlled by tff � tγ .
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(iii) tγ � tff � t�: Dilute liquid limit.
In the limit of the lowest packing fractions accessible to

the granular liquid phase, the advection time scale becomes
even smaller than the internal relaxation time scale. In such a
regime, both Pe � 1 and Wi � 1. Comparing the toy model
μ Eq. (17) and the experimental law Eq. (18) leads to

μ � M (1)
1 + M (2)

1 = μ2, (20)

which together with Eq. (19) leads to M (1)
1 = μ2 − μ1.

Finally, defining I0 = M (1)
2 I/Pe,

μ(1) = μ2 − μ1

1 + I0/I
, (21)

so that recalling that in the Bagnold regime Wi � 1 is always
true, this equation combined with Eq. (19) shows that Eq. (17)
is exactly equivalent to Eq. (18).

It is also interesting to interpret the above results in terms
of Maxwell’s model. Since σ = ∫

dt γ̇ G(t ), we can identify
G(t ) with �(t )2, which leads to the following equation for the
time-dependent shear modulus:

G(t ) = [(G0 − G∞)e−2�(1)t + G∞e−2�(2)t ]e−(γ̇ t )2/γ 2
c , (22)

where, recalling that G(t ) follows a two-step decay similar
to that of �(t ), G0 is the initial value of the shear modulus
and G∞ that of the plateau 1/�(1) � t � 1/�(2). Accord-
ingly, G0 � G∞. This model differs from the above nonlinear
Maxwell model because of two features: (i) it is expressed
in terms of not only one but two characteristic shear moduli,
which allows for a richer phenomenology, and (ii) the con-
tribution of the advection time τγ = γc/γ̇ is now quadratic
instead of linear. Consequently, the shear stress can be written

σ = σy
( G0

G∞
− 1

)
1 + γ c/Pe

+ σy

1 + γ c/Wi
, (23)

where σy and G∞ are related by Eq. (14). The pressure can
also be decomposed:

P = P0 + P1

1 + γ c/Pe
+ P2 − P1

1 + γ c/Wi
, (24)

which finally leads to the following expressions for μ1 and
μ2:

μ1 = G∞γ c

P0 + P1
, μ2 = G0γ c

P0 + P2
. (25)

Hence, μ1 corresponds to the plateau elastic response of the
viscoelastic fluid, whereas μ2 is associated with its initial
value before the first step of the decay. Consistently with G0 �
G∞, μ1 � μ2 always holds. Note that the pressures appearing
in these expressions are the limiting values of the pressure in
the quasistatic (for μ1) and dilute liquid limit (for μ2). Since
both limits correspond to regimes in which the role played by
advection is crucial, the corrections to the hydrostatic pressure
P0 due to the shear are significant [38].

Finally, the identification of μ1 and μ2 with the model of
γ̇ -dependent friction of Savage and Hutter [2] (see details in
Appendix C) allows us to identify μ1 = tan(δS ) and μ2 =
tan(δD), where δS and δD that delimit the regime in which
steady shear flow can develop down slopes.

All in all, in the light of the above discussion, our toy model
can be rewritten in full generality as

μ(I, Wi) = μ1

1 + M/Wi
+ μ2 − μ1

1 + I0/I
. (26)

Adding the constraint that in the Bagnold regime the final
relaxation process is always controlled by shear advection, in
which case Wi � 1, this equation reduces exactly to the μ(I )
law. It was discussed in a previous studies [13,30,33,38] that
μ1 was not a direct consequence of the presence of interpar-
ticle friction, but also arose from collective effects. What the
present study adds to this picture is the relation between the
nonzero value of μ1 and the separation of time scales in the
relaxation of � toward 0.

D. Granular suspensions

In a series of recent studies, striking similarities between
the laws governing the flow of dry granular liquids and gran-
ular suspensions have been highlighted [22,26,37,40–44]. For
the sake of consistency, let us let aside the considerations
about the regime close to the jamming transition [22,42], and
focus on the dense liquid regime.

The main results can be summarized as follows: in pres-
ence of a viscous liquid, a new time scale related to the steady
motion of particles submitted to a drag force proportional to
its velocity, called tη, must be taken into account [26,40] (in
the original paper [26] another regime was considered where
the drag force is proportional to the square of the particle’s
velocity; this large Reynolds number regime is not considered
here). The ratio of this time scale and the advection time
scale defines a new dimensionless number J = η∞γ̇ /P (in
the paper [26] an additional coefficient related to the Darcy
law was included in the definition of J ; we chose to give here
the most widely used notation), where in accordance with our
previous notations η∞ is the viscosity of the surrounding fluid.

It was then observed that μ follows a law, similar to
Eq. (18), but where J rather than I plays the role of dimen-
sionless number. More precisely, it was proposed in Ref. [41]
that μ(J ) writes in the following form:

μ(J ) = μc(J ) + μh(J )

= μ1 + μ2 − μ1

1 + J0/J
+ μh(J ). (27)

In the above expression two kinds of terms are identified: a
collisional contribution which form is very similar to Eq. (18),
and a hydrodynamic term that is tailored to reproduce Ein-
stein’s viscosity at low density.

Let us examine this result in the light of our toy model. As
explained above, the main effect of the surrounding fluid is to
introduce a new time scale tη that will compete with tff, t� and
tγ to determine the leading behavior of μ.

A good way to understand how the various time scales
relate to each other is to first look at the numerical data
from GITT. On Fig. 5 are displayed various profiles of �. To
visualize better the effect of tη, which is a short time scale,
we choose a high ϕ and a very low γ̇ , so that the long-time
decay is delayed as much as possible. Two main regimes
can be distinguished: if the Peclet number of the surrounding
fluid Pe0 = γ̇ d2/D—D being the diffusion coefficient in this
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FIG. 5. Dynamical structure factor of granular suspensions for
Pe = 10−9, ϕ = 0.58, and Pe0 between 2.10−5 (red) and 2.103

(black) obtained as a numerical solution of the GITT equations (3).
The curves for Pe0 < 10−5 all collapse on the red one. All curves
correspond to ε = 0.85.

fluid—is small enough, then all curves collapse as far as the
first step of the decay is concerned, namely the first step of
the decay is controlled by ωc independent of the presence or
absence of surrounding fluid. This is the dry granular liquid
regime studied before, that extends to suspensions in a fluid
with a low enough η∞. Then, for higher Pe0’s, tη determines
the scale associated with the first decay until it merges with
t� . This is the viscous suspension regime.

A summary of all the different regimes accessible to the
system is given in Table I. There are four competing time
scales, but not all possible combinations are allowed. The
short time decay is controlled either by tη or tff. When the
liquid is Newtonian, which corresponds to memory effects
playing a negligible role in the MCT equation Eq. (1), the
short time scale is equal to t� . Note that by definition, t� �
tη, tff.

If t� � tγ , then the long-time decay is independent of ad-
vection. Thus, the liquid can be either Newtonian, or strongly
coupled if the density is high enough so that the cage effect

becomesimportant and the two relaxation scales separate from
each other.

The remaining regimes are the regimes controlled by ad-
vection, which can be either Bagnold or yielding. In the case
tη � tff, the μ(I ) rheology is recovered. If tη � tff, however,
then the short-time decay is determined by η∞. By a reasoning
similar to the one we used previously, the ratio in Eq. (17)
is thus a dimensionless number proportional to 1/J . This
explains the strong similarities between the functional form
of μ in the dry and suspended cases: what changes is simply
the nature of the short time scale; μ is still determined in the
same fashion by the competition of a two-step decay profile,
and advection.

For example, let us consider the case of a dense granular
suspension in the Bagnold regime. Strictly speaking, adding
a viscous fluid changes the Bagnold equation since motion in
the liquid adds a new source of energy dissipation in the sys-
tem. However, the power dissipated by Stokes’ force scales as
T , whereas the power dissipated by collisions scales as T 3/2.
Therefore, at high enough density, we can reasonably expect
that collisions are the primary source of energy dissipation.
Hence, the large time contribution μ(2) should be unchanged
compared to the dry case, that is μ(2) = μ1. As for μ(1), the
only change is the nature of Pe which is now ∝ J . All in all,

μ = μ1 + μ2 − μ1

1 + J0/J
, (28)

where I0 has been changed into J0 to account for the fact that
the factor relating the original time scale ratio tγ /tη to 1/I or
1/J may differ; but the other coefficients are unchanged. In
particular, in Eq. (28) only the collisional part μc contributes.
This is consistent with the experimental findings of Ref. [26].
It also means that the value of μ in the quasistatic limit should
be the same in the dry and the suspended cases, which is
also consistent with experiments [22,26,43] (note however
that some caution is required, indeed in the deep quasistatic
regime, friction becomes important [42] and could induce
significant changes to the picture presented here).

When going away from this particular case, μ(2) ac-
quires a nontrivial structure which should account for μh

(the additional, higher-order contributions to μ exhibited in
Appendix A should also enter the hydrodynamic component).

TABLE I. Summary of the different regimes determined by the various time scales in granular suspensions.

Short-time decay Long-time decay Flow regime

Dry granular liquid: tη � tff tγ � t� t� � tff: Newtonian

t� � tff: Strongly coupled

t� � tγ tγ � tff: Quasistatic

tγ � tff: Dense liquid

tγ � tff: Dilute liquid

Granular suspension: tη � tff tγ � t� t� � tη: Newtonian

t� � tη: Strongly coupled

t� � tγ tγ � tη: Quasistatic

tγ � tη: Dense liquid

tγ � tη: Dilute viscous
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In full generality, the three-time-scales toy model predicts a
rheological law of the form

μ(J , Wi) = μ1

1 + M/Wi
+ μ2 − μ1

1 + J0/J
, (29)

where M is the remaining constant. This equation shows a
fundamental difference with Eq. (27): μ depends here on the
two dimensionless numbers Wi and J . This is a crucial lesson
from our previous study of the dry case. If no liquid is present
around the particles, however, then in a typical experiment,
the balance between the injected and the dissipated energies
reduces to a balance between shear heating and dissipation by
collisions, which then enforces the Bagnold scaling, so that
only one of the two degrees of freedom remain. This is prob-
ably one of the reasons behind the large success of the μ(I )
law. In granular suspensions, however, viscous drag is another
important source of dissipation, so that both dimensionless
numbers are independent, which explains why the rheology
of suspensions has remained more elusive.

We cannot however easily test our model Eq. (29) against
the particular form of μh used in Ref. [41] because (i) our toy
model expresses everything in terms of ratios of time scales,
whereas Ref. [41] fits a known ϕ-dependent function, and (ii)
there is no guarantee that the low ϕ limit of our model, built to
be precise for ϕ � 0.4, has the Einstein’s viscosity as a natural
limit as this expression is expected to be precise only up to
ϕ � 0.03 [64].

Finally, an important feature of non-Brownian suspensions
by opposition to dry granular liquids is the dilute liquid limit
in which μ saturates in dry liquids, but continues to increase
in suspensions [41]. This goes a little bit beyond the frame
of our model insofar as the regime in which μ really satu-
rates is rarely reached by experiments, which means that the
dense-liquid approach may break down before μ saturates,
and the remaining variations can be accounted for by the
difference between I0 and J0. Indeed, whereas in dry granular
liquids when ϕ is sufficiently decreased the stress is not well
transmitted through the whole fluid, in the case of suspensions
in a viscous enough liquid, the surrounding fluid can carry the
stress to all particles and maintain the average velocity profile.
Therefore, it is not even clear that the validity of our approach
in the dilute limit extends to the same boundaries in the dry
and suspended cases.

IV. CONCLUSION

To conclude, we adapted models used to describe the slow
down of the dynamics of supercooled liquids and dense col-
loidal suspensions to the rheology of granular liquids, in the
form of simple toy models that can be solved analytically,
and yield constitutive equations that can be easily compared
to numerical or experimental data. Because our model is not
restrained to the Bagnold scaling regime of granular rheology,
it shed the light on the importance of a third time scale, which
was then crucial to make the connection between the rheology
of dry granular flows and that of granular suspensions. The
design of these toy models represent, in our opinion, a signif-
icant progress for the following reasons: (i) The constitutive
equations we presented above are not purely phenomenolog-
ical laws, but laws based on fundamental principles of liquid

state physics. (ii) The toy model construction revealed that
the complexity of the rheological behavior of granular liquids
resides in the fact that it mixes physical phenomena occurring
at different scales, both at the microscopic scale of individual
particles’ motion (via tff and tη), at the macroscopic scale
of the material (via tγ ), but also at the mesoscopic scale of
collective effects of a large number of particles (via t�). In
particular, the effect of t� was not anticipated in early exper-
imental works, because most of the granular flows studied
in the lab occur in the Bagnold regime where t� is much
larger than any other time scale involved. However, t� remains
crucial in the understanding of the bigger picture of granular
rheology, where various flow regimes are allowed. (iii) The
understanding of the fundamental processes at play in the
different terms of the constitutive laws allows to encompass
the rheology of both dry granular flows, and the flow of
granular suspensions under the same formalism. This lead
us to formulate nontrivial predictions about the rheology of
suspensions, such as Eq. (29), which can then be tested in
experiments that can be conducted in simple shear cells like
in Refs. [39,65], or in more refined rheometers like the one
used in Ref. [41].
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APPENDIX A: REDUCTION OF THE ITT INTEGRALS

This Appendix contains some details on the derivation of
Eqs. (7) and (8).

First, we implement the approximation of the toy model:
we replace �q(t ) by an exponential decay, and add the advec-
tion Gaussian screening factor:

K0 = γ̇

∫ +∞

0
dt

∫ +∞

0
dq

F1(q, t )√
1 + (γ̇ t )2/3

� γ̇

∫ +∞

0
dt e−2�t−2(γ̇ t )2/γ 2

c

= γc
√

π

2
√

2
e�2γ 2

c /(2γ̇ 2 )erfc

(
�γc

γ̇
√

2

)
. (A1)

Rigorously speaking, K0 includes an additional overall factor
that accounts for the wave-number integral.

Then, we can replace exp(x2)erfc(x) by 1/(1 + x
√

π ) that
shares the same x � 1 and x � 1 behaviors at leading order,
and represents a satisfactory approximation of the whole func-
tion (see Fig. 6), which gives

K0 � γ c

2

1

1 + γ c u
. (A2)

This procedure corresponds to representing K0 by its lowest
order Padé approximant (which is unique).

The second ITT integrals appears in the expression of the
correction to the pressure due to the shear (at our level of
approximation it is not necessary to discriminate between F1

035405-12



GRANULAR RHEOLOGY: A TALE OF THREE TIME … PHYSICAL REVIEW E 112, 035405 (2025)

0.0 2.5 5.0 7.5 10.0 12.5 15.0

x

0.0

0.2

0.4

0.6

0.8

1.0 1
1+x

√
π

ex2
erfc(x)

FIG. 6. Comparison of the functions x 
→ 1/(1 + x
√

π ) (dashed
line) and x 
→ ex2

erfc(x) (full line).

and F2):

K1 = γ̇

∫ +∞

0
dt (γ̇ t )

∫ +∞

0
dq

F1(q, t )√
1 + (γ̇ t )2/3

� γ 2
c

4
(1 − γ c u eu2γ 2

c /2erfc(u γc/
√

2)). (A3)

At this stage, the first option is to apply the same approxima-
tion as for K0, which gives the formula Eq. (8).

However, using this replacement for K1 is not as precise
as it was for K0. Indeed, when u � 1, the two leading-order
terms in the expression Eq. (A3) cancel against each other, so
that K1 is O(1/u2), and not O(1/u) as predicted by Eq. (8).

A better approximation can be built by relating K1 to K0:

K1 � γ̇

∫ +∞

0
dt (γ̇ t ) e−2�t−2(γ̇ t )2/γ 2

c

= − γ̇

2

d

d�

(∫ +∞

0
γ̇ dt e−2�t−2(γ̇ t )2/γ 2

c

)

= − γ̇

2

dK0

d�

= γ 2
c

4

1

(1 + γ c u)2
. (A4)

This expression can be used to replace Eq. (8) throughout
the reasoning presented in this article. It yields higher-order
terms with higher powers of I in the μ(I ) law, and therefore
corresponds to a Padé approximant of higher order.

Given the excellent agreement between the μ(I ) law and
the available experimental data, we preferred to keep the
simpler Eq. (8) in our derivation. However, this computation
reminds us that this law is only approximate.

APPENDIX B: NONLINEAR MAXWELL MODEL

In their study of the rheology of colloidal suspensions
[53], Fuchs and Cates designed a simple toy model which
reproduces the ability of the complex colloidal liquid to in-
terpolate between the Newtonian and the yielding regimes.

In the Maxwell model of viscoelastic fluids in which the
shear rate is decomposed into a solidlike and a liquidlike
contributions, it can be established that the dynamical shear
modulus G(t ) follows an evolution of type G(t ) = G∞e−t/τ .
In colloidal suspensions, as in the case of granular fluids,
there are two characteristic time scales in competition: the
structural relaxation time scale τ , and the advection time scale
τγ = c/γ̇ (c being an unimportant constant). Fuchs and Cates
then proposed to replace the time scale in the Maxwell model
of viscoelasticity by τM defined as

1

τM
= 1

τ
+ 1

τγ

, (B1)

which leads to the following expression for the shear stress:

σ = γ̇

(
η∞ + G∞ τ

1 + γ̇ τ/c

)
, (B2)

where η∞ is the high shear limiting viscosity.
The interpretation of Eq. (B2) goes as follows: at low

density the structural relaxation time scale is small, so that,
γ̇ τ � 1 and G∞τ � η∞, so that σ � η∞γ̇ ; whereas as the
density increases, the internal relaxation becomes very slow,
so that γ̇ τ � 1, and σ � G∞c, which corresponds to a mate-
rial of yield stress σ FC

y (c) = G∞c.
Since our toy model also applies to colloidal suspensions

after taking the elastic limit ε → 1, it is instructive to compare
it to the nonlinear Maxwell model of Fuchs and Cates. In our
setup, the scale of structural relaxation is given by �, leading
to the identification � = 1/τ . From Eq. (11), the yield stress
corresponds to σy, so that σy = G∞c. From Eq. (10), we can
further identify c and γ c. Plugging this back into Eq. (9) yields

σ = σy

1 + γ c�/γ̇
= γ̇

G∞ τ

1 + γ̇ τ/c
, (B3)

which is almost exactly identical to Eq. (B2), except for the
first term. Note that such term does not derive naturally from
the Maxwell model either, and has to be added afterward.

Indeed, as discussed above, the rheology is not governed
by a competition between two, but three time scales. While
for dense colloidal suspensions the main effects are described
by the second term in Eq. (B2), as ϕ decreases, the influence of
the short-time decay of � become more and more important.
In colloidal suspensions, the short-time dynamics is deter-
mined by the motion in the viscous fluid, with a time scale
τη ∝ η∞. Furthermore, since the surrounding liquid is not
supercooled, we can suppose that the short-time contribution
σ (1) in the Newtonian regime, so that, according to Eq. (10),
σ (1) = η∞γ̇ . Finally, with σ (2) given by Eq. (B3), the initial
model of Fuchs and Cates Eq. (B2) is recovered.

APPENDIX C: SAVAGE AND HUTTER MODEL

In Ref. [2], Savage and Hutter proposed a model of γ̇ -
dependent friction, defined in terms of two universal functions
f1(ϕ) and f2(ϕ) that writes

μSH = tan(δ) = P0(ϕ) tan(δS ) + f2(ϕ)γ̇ 2

P0(ϕ) + f1(ϕ)γ̇ 2
, (C1)

where δS is the minimal angle for a steady flow to be sus-
tained on a given slope. The expression Eq. (C1) is justified
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as follows: the numerator is the shear stress that can be de-
composed as a yield stress that survives in the limit γ̇ → 0,
σ SH

y = P0 tan(δS ), and a correction that typically goes as γ̇ 2

in the Bagnold regime. The denominator is nothing but the
similar expression for the pressure.

To make the comparison with our model easier, let us forget
about the ϕ dependence, and introduce the following coeffi-
cients: μSH

1 = tan(δS )—the effective friction coefficient in the
γ̇ � 1 regime—α = f1/P0 and μSH

2 = f2/ f1. Equation (C1)
can thus be rewritten as

μSH = μSH
1

1 + α γ̇ 2
+ μSH

2

1 + 1/(αγ̇ 2)

= μSH
1 +

(
μSH

2 − μSH
1

)
(1 + αγ̇ 2)

2 + αγ̇ 2 + 1/(αγ̇ 2)
. (C2)

This expression describes an evolution qualitatively similar to
μ(I ) between two finite limits μ1 and μ2 when γ̇ is varied.
Since Eq. (C2) is written in the Bagnold regime, the possibil-
ity to have a Newtonian fluid as in our toy model is excluded.

Finally, in the model of Savage and Hutter, μSH
1 and μSH

2
define two friction angles δS and δD that separate different flow
regimes down a slope of angle ζ : (i) if ζ < δS , then the flow
stops at some point because of the friction inside the complex
fluid; (ii) if δS � ζ � δD, then the fluid reaches a steady flow
regime if let to flow for a long enough time; (iii) if ζ > δD,
then the flow is continuously accelerated. Note that δS � δD is
consistent with μ1 � μ2.

APPENDIX D: MODE-COUPLING EQUATIONS
FOR INELASTIC HARD SPHERES

This Appendix merely summarizes the equations. Their
derivation can be found in Ref. [47].

The dynamics of �q(t ) is given by a Mori-Zwanzig type
equation:

�̈q(t ) + νq(t )�̇q(t ) + q2(t )C2
q(t )�q(t )

+ q2(t )C2
q(t )

∫ t

0
dτ mq(t, τ )�̇q(τ ) = 0. (D1)

In this equation, the characteristic frequencies are:

νq = 1 + ε

3
ωc [1 + 3 j′′0 (qd )] , (D2)

where d is the particle’s diameter, j0 is the zeroth-order spher-
ical Bessel function, and �2

q = q(t )2C2
q(t ), with the speed of

sound Cq expressed as

C2
q = T

Sq

[
1 + ε

2
+ 1 − ε

2
Sq

]
. (D3)

The mode-coupling kernel mq is quite similar to its well-
known value in the elastic limit ε → 1:

mq(t, τ ) = Aq(t )(ε)
Sq(t )

nq2

∫
d3k

(2π )3
Sk(τ )Sp(τ )

× [
(q̂.k)nck(t ) + (q̂.p)ncp(t )

]
× [

(q̂.k)nck(τ ) + (q̂.p)ncp(τ )
]

× �k(τ )(t − τ )�p(τ )(t − τ ). (D4)

In this equation, n is the fluid’s density, hats denote normal-
ized vectors, cq denote the direct correlation function, and
Aq(ε) is a prefactor given by [61]

A−1
q (ε) = 1 + 1 − ε

1 + ε
Sq , (D5)

which does equal to 1 in the elastic limit, as required by
consistency.
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