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1. Introduction

The algebraic, rather than exponential in time, decay of the (tagged particle) velocity
autocorrelation function (VACF),  (t) / t

�↵, in simple fluids was quite a surprise when
it was first discovered [1, 2]. It was finally explained by mode-coupling theories and
attributed to vortex flows [3]. Long-time tails are expected even in high energy physics [4]
now and have been reported recently also for fluids far from equilibrium [5]–[7]. In
particular they are discussed for granular fluids [8]–[13].

Here, I show that the original mode-coupling argument [14]–[16] can be adapted to
the stationary state of a randomly driven granular fluid. In particular, I explain the
observation that ↵ ⇡ 1.5 in three space dimensions [13]. This is exactly the same exponent
as for equilibrium fluids and stands in contrast to a number of unconventional exponents
reported in the literature.
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In a fluid in thermal equilibrium, long-time tails are a result of the coupling to the
transverse current modes, jTk , labelled by the wavevector k. A number of approaches
(see [3] and references therein, and [15]–[19]) confirmed the result  (t ! 1) / t

�3/2. In a
Lorentz gas, momentum is not conserved and it was argued [20] that this leads to a faster
decay,  (t ! 1) / t

�5/2. See [21] for why this behaviour may be hard to observe.
For a freely cooling granular gas, a long-time tail in the number of collisions, ⌧ , is

predicted, of the form  (⌧ ! 1) / ⌧

�3/2 [9]. Here, the couplings to the longitudinal
and transverse currents are both relevant. For shear-driven granular fluids, there are two
competing proposals. Hayakawa and Otsuki [10] predict  (t ! 1) / (�̇t)�5/2, where �̇ is
the shear rate, and Kumaran [12] predicts  (t ! 1) / (�̇t)�7/2 in the vorticity direction
and a slightly faster decay,  (t ! 1) / (�̇t)�15/4, in the gradient and flow directions.
The di↵erence remains unresolved [22]. In both theories, the physical interpretation of the
relevant collective modes is not obvious.

From the above discussion one can conclude that the existence of long-time tails seems
to be rather universal even in fluids far from equilibrium. Two questions, however, have
to be answered for every specific system: what is the mechanism that induces the slow
decay and what is the value of the exponent ↵? In the following, I will address these two
questions for the randomly driven granular fluid.

The paper is organized as follows. I start in section 2 by defining my model system. In
section 3 I give the formally exact equation of motion for the VACF. This will be closed
in section 4 with a mode-coupling approximation. In section 5 I discuss the results of the
approximation, and in particular, the long-time tails. In the final section 6 I summarize
my results and give some perspectives for future work.

2. The model

2.1. Inelastic hard spheres

The granular fluid is modelled as a monodisperse system of N smooth inelastic hard
spheres of diameter d and mass m = 1 in a volume V = L

3. I consider the thermodynamic
limit N, V ! 1 such that the density n = N/V remains finite. Dissipation is introduced
through a constant coe�cient of normal restitution " 2 [0, 1] that augments the law of
reflection [23],

r̂
12

· v0
12

= �" r̂
12

· v
12

, (1)

where v
12

= v
1

� v
2

is the relative velocity and r̂
12

is the unit vector pointing from the
centre of particle 2 to particle 1. The prime indicates post-collisional quantities.

2.2. The stochastic driving force

The driving force is implemented as an external random force,

v0
i(t) = vi(t) +

p
P

D

⇠i(t), (2)

where P

D

is the driving power. The ⇠↵i , ↵ = x, y, z, are Gaussian random variables with
zero mean and variance,

D
⇠

↵
i (t)⇠

�
j (t

0)
E

⇠
= [�ij � �⇡(i),j]�

↵�
�(t� t

0), (3)
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where ⇡(i) denotes the nearest neighbour of particle i. In e↵ect, the two particles i and
⇡(i) are driven by forces of equal strength but opposite direction. Thereby, the external
force does not destroy momentum conservation on macroscopic length scales [13, 24].

2.3. The granular fluid

Macroscopically, the fluid is fully characterized by the packing fraction, ' = ⇡nd

3

/6,
the coe�cient of restitution, ", and the driving power, P

D

. In the stationary state, the
granular temperature T = T (', ", P

D

) = 1

3N

P
i v

2

i is given by the balance between the
driving power, P

D

, and the energy loss through the inelastic collisions.
The collision frequency !c /

p
T is the only timescale of the system. Thus, changing

the granular temperature only changes the timescale of the system. I use this freedom and
set T ⌘ 1 in the following.

3. A microscopic description

3.1. The phase space distribution

In contrast to the case for fluids in thermal equilibrium, no analytical expression for the
stationary phase space distribution of driven granular fluids is known so far. Therefore,
I have to make a few assumptions to evaluate the expectation values. First of all I
assume that positions and velocities are uncorrelated, %(�) = %

r

({ri})%v({vi}). Moreover, I
assume that the velocity distribution factorizes into a product of one-particle distribution
functions, %

v

({vi}) =
Q

i %1(vi). All we need to know about %
1

(v) is the situation for
a few moments—namely, that it has a vanishing first moment,

R
d3

v v%
1

(v) = 0, a
finite second moment,

R
d3

v v

2

%

1

(v) = 3T < 1, and a finite third collisional moment,R
d3

v (r̂ · v)3⇥(�r̂ · v)%
1

(v) < 1. The spatial distribution function, %
r

({ri}), enters the
theory via a static correlation function, as will be discussed below.

Averages over pairs of observables define a scalar product, hA|Bi := hA⇤
Bi :=R

d� %(�)A⇤(�)B(�), where A

⇤ denotes the complex conjugate of A.

3.2. Observables

The VACF,  (t) = hvs|vs(t)i /3, is defined in terms of the tagged particle velocity vs.
The tagged particle position will be described by the density ⇢s(r, t) = �(rs � r(t)). The
host fluid is characterized by the density and current fields

⇢(r, t) =
1

N

X

i

�(r � ri(t)), (4a)

j(r, t) =
1

N

X

i

vi(t)�(r � ri(t)). (4b)

In particular, I will use the spatial Fourier transform of those fields, ⇢sk(t), ⇢k(t), and the
longitudinal and transverse current fields j

L
k (t) = k̂ · jk(t), and jTk (t) = jk(t) � k̂jLk (t),

respectively.
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3.3. The dynamics

We have shown in [25] that the time evolution operator U(t) = exp(itL
+

) can be written
in terms of an e↵ective pseudo-Liouville operator L

+

[26]. It is given as a sum of three
parts, L

+

= L
0

+ T
+

+L+

D

, which are in turn the free streaming operator L
0

, the collision
operator T

+

, and the driving operator L+

D

.
With the Mori projectors P = |vsi hvs| /3, Q = 1�P , one can derive a formally exact

equation of motion for the VACF:

 ̇(t) +
1 + "

3
!

E

 (t) + !

2

E

Z t

0

d⌧ m(t� ⌧) (⌧) = 0, (5)

where the local term hvs|iL+

vsi /3 = �(1 + ")!
E

/3 was determined in [13]. The memory
kernel is formally given as

m(t) = hvs|L+

QŨ(t)QL
+

vsi/3!2

E

(6)

and Ũ(t) = exp(itQL
+

Q) is a modified propagator [27, 28, 25]. The Enskog collision
frequency !

E

= 24'�/
p
⇡d is given in terms of the contact value of the pair correlation

function at contact, � [29].

4. Mode-coupling approximations

I consider three contributions to the memory kernel m(t) ⇡ m⇢(t) +m

L

(t) +m

T

(t) that
are induced by the coupling of the tagged particle to the host fluid—namely, those to
the collective density field (m⇢(t)), and to the longitudinal and transverse current fields
(m

L

(t) and m

T

(t), respectively).
The behaviour of the collective modes is characterized by their two-point correlation

functions,

�(k, t) = N h⇢k|⇢k(t)i /Sk, (7a)

�

L

(k, t) = N

⌦
j

L

k |jLk(t)
↵
, (7b)

�

↵�
T

(k, t) = N

D
j

T↵
k |jT�

k (t)
E
= �

T

(k, t)�↵�, (7c)

where Sk = N h⇢k|⇢ki is the static structure factor, and

�

s

(k, t) = h⇢sk|⇢sk(t)i (8)

is the incoherent scattering function.
In terms of these correlation functions, I replace the modified propagator

Ũ(t) ⇡ N

X

k

��
⇢k⇢

s

�k

↵
�(k, t)�

s

(k, t)
⌦
⇢k⇢

s

�k

��
/Sk

+ N

X

k

��
j

L
k⇢

s

�k

↵
�

L

(k, t)�
s

(k, t)
⌦
j

L
k⇢

s

�k

��

+
N

2

X

k

��jTk⇢
s

�k

↵
�

T

(k, t)�
s

(k, t)
⌦
j

T

k ⇢
s

�k

�� (9)
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by a mode-coupling approximation. Similar approximations have been made in, e.g.,
[14, 15].

The coupling to the collective density field then reads

3!2

E

m⇢(t) =
X

k

V⇢
kW

⇢
k�(k, t)�s

(k, t), (10)

where the vertices

V⇢
k =

q
N/Sk

⌦
vs|L+

Q⇢k⇢s�k

↵
= k(Sk � 1)/

p
NSk, (11a)

W⇢
k =

q
N/Sk

⌦
⇢k⇢

s

�k|QL
+

vs

↵
=

1 + "

2
k(Sk � 1)/

p
NSk (11b)

can be deduced from equations (46) and (47) in [25]. Explicitly, we find

!

2

E

m⇢(t) =
2⇡2

9

1 + "

2

d

3

'

Z 1

0

dk k4

(2⇡)3
Sk(nck)

2

�(k, t)�
s

(k, t), (12)

where nck = 1� 1/Sk is the direct correlation function [29]. This implies that !2

E

m⇢(t) ⌘
m

0

(t), wherem
0

(t) is given in [30] as the memory kernel for the mean square displacement.
In [30] we were concerned with the behaviour at high densities close to the glass
transition and we used a mode-coupling approximation for the coherent scattering
function, �(k, t), itself. Here, I am interested in the regime of moderate densities, instead.
Consequently, below I will use a hydrodynamic expression for the coherent scattering
function (equation (20b)).

The coupling to the currents reads

3!2

E

m

L

(t) =
X

k

VL
kWL

k �L

(k, t)�
s

(k, t), (13a)

3!2

E

m

T

(t) = 1

2

X

↵,�

X

k

V↵�
k W↵�

k �

T

(k, t)�
s

(k, t), (13b)

where the vertices

VL

k =
p
N

⌦
vs|L+

Qj

L
k⇢

s

�k

↵
, (14a)

WL

k =
p
N

⌦
j

L
k⇢

s

�k|QL
+

vs

↵
, (14b)

and

V↵�
k =

p
N

⌦
v

�
s |L+

Qj

T↵
�k⇢

s

k

↵
, (15a)

W↵�
k =

p
N

⌦
j

T↵
�k⇢

s

k|QL
+

v

�
s

↵
(15b)

are calculated in appendix A. While V⇢
k 6= W⇢

k indicates the violation of time reversal
invariance in the dissipative fluid, one finds

VL

k = WL

k = i
1 + "

3
k̂!

E

U

L

(kd)/
p
N, (16a)

V↵�
k = W↵�

k = i
q
2/3�↵�

1 + "

3
!

E

U

T

(kd)/
p
N, (16b)
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where U

L

(x) = 3j00
0

(x) and U

T

(x) =
p
6j0

0

(x)/x are e↵ective potentials. Here, j
0

(x) is
the zeroth-order spherical Bessel function [31] and the prime denotes the derivative with
respect to the argument. Notably, the e↵ective potentials are independent of density. The
vertices are similar in form to those found in [14, 15].

For the memory kernels, we find1

m

L,T(t) = �8⇡2

81

(1 + ")2

4

d

3

'

Z 1

0

dk k2

(2⇡)3
U

2

L,T(kd)�L,T(k, t)�s

(k, t). (17)

Given a static structure factor, Sk, and the dynamic correlator (7a)–(7c) and (8), the
approximate memory kernel is fully determined by equations (12) and (17). All three
contributions to the approximate memory kernel diverge in the short-time limit. Actually,
the memory kernel should vanish for t! 0. For elastic hard spheres, a number of proposals
to that end have been made [14, 15, 17]. As I am only interested in the asymptotic
behaviour, I will not further discuss this divergence.

5. Discussion

5.1. The long-time tail

The long-time asymptotics,  (t!1), are related to the limit lims!0

s ̂(s) in the Laplace
domain2. For small s we have

s ̂(s) = s[�i!
E

+ s� !

2

E

m̂(s)]�1

' i
s

!

E

+
s

2

!

2

E

� sm̂(s), (18)

i.e., lims!0

s ̂(s) = � lims!0

sm̂(s) or

 (t ! 1) = �m(t ! 1). (19)

The long-time tails of the VACF are identical (up to the sign) to those of the associated
memory kernel.

At moderate densities, a driven granular fluid is well described by Navier–Stokes order
hydrodynamic equations [32, 33]. Consequently, I assume that the dynamic correlation
functions take the following form:

�

s

(k, t) = e�Dk2t
, (20a)

where D is the di↵usion coe�cient,

�(k, t) = cos(ckt)e��k2t
, �

L

(k, t) = �̈(k, t)/k2

, (20b)

where c is the speed of sound and � the sound damping constant, and

�

T

(k, t) = e�⌘k2t (20c)

with the shear viscosity ⌘.

1 The apparent divergence for ' ! 0 is spurious, as !E ⇠ O(').
2 I use the convention that f̂(s) = LT[f ](s) = i

R1
0 f(t)e�ist dt.
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All the transport coe�cients and the speed of sound are functions of the coe�cient
of restitution ". For the di↵usion coe�cient, Fiege et al [13] found D(") / 2/(1 + ").
According to van Noije et al [34] the sound damping constant is given as � = ⌫ + D

�

where ⌫ is the kinematic viscosity and D

�

(") / 1/(1� "

2) is a term peculiar to inelastic
fluids. The viscosities ⌘ and ⌫ have a more complicated dependence on the degree of
dissipation [35]. The speed of sound, c, is smaller in a fluid of inelastic compared to elastic
hard spheres but only weakly depends on the value of the coe�cient of restitution, "
[33, 34].

In the long-wavelength limit k ! 0 it holds that Sk, ck ! const. and U

2

L

(kd) ! 1,
U

2

T

(kd) ! 2/3. In the long-time limit t ! 1, we thus find

m

T

(t ! 1) ' �M

T

[(D + ⌘)t/d2]�3/2
, (21a)

m

L

(t ! 1) ' �M

L

[(D + �)t/d2]�3/2e�c2t/4(D+�)

, (21b)

m⇢(t ! 1) ' M⇢[(D + �)t/d2]�1/2e�c2t/4(D+�)

. (21c)

This is the central result of this contribution. The evaluation of m
T

(t ! 1) is simply a
moment of a Gaussian integral. The kinds of integrals that are necessary for the evaluation
ofm⇢,L(t!1) are discussed in appendix B. Away from the glass transition, c2/4(D+�)⇠
O(!

E

), i.e., the contributions m⇢,L(t) decay on a short timescale, /!�1

E

. The dominant
asymptotic contribution is thus m(t ! 1) = m

T

(t ! 1).
The prefactors read explicitly

M

T

=
1

486
p
⇡

(1 + ")2

4'
, (22a)

M

L

=
1

162
p
⇡

(1 + ")2

4'

c

2

D + �
, (22b)

M⇢ =
1

1152
p
⇡

1 + "

2'

S

0

(nc
0

)2

!

2

E

d

2

c

4

(D + �)4
. (22c)

Due to the nontrivial dependence of the viscosity, ⌘(', "), and the sound damping �(', ")
on the coe�cient of restitution, ", and on the density, ', there is no simple trend of m

T,L,⇢

with ". A reduction of the memory e↵ects compared to the case for a fluid of elastic hard
spheres, however, can be expected. The opposite trend was found for the long-time tail,
/t

�3/2, of the autocorrelation function for the Eulerian flow field u(r, t) in a suspension of
rodlike active particles [5, 6]. It has been argued that in such a system the long-time tail
could even be enhanced by a factor 1000 [5]. Interestingly, this enhancement is attributed
to an increased noise temperature whereas here, an increase in the driving strength serves
to partially suppress the correlations that support the long-time tail.

From equation (19), it follows that

 (t ! 1) ' M

T

[(D + ⌘)t/d2]�3/2 / t

�3/2
. (23)

With this result I have answered both questions from the introduction. We now know the
value of the exponent ↵ and which of the possible couplings is relevant.

At high densities, close to the granular glass transition [25], the viscosity, ⌘, is expected
to be large and the long-time tail will be strongly suppressed [36].
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5.2. Signatures of non-equilibrium dynamics

At this point it is time to step back and ask whether it is possible to distinguish between
a fluid of elastic hard spheres in thermal equilibrium and the specific model of a driven
granular fluid discussed here and in [25, 30, 33], based on the tagged particle measurements
of the VACF  (t), or the incoherent scattering function �s(k, t). If we restrict ourselves
to qualitative features and the theoretical results derived here and in [30], the answer is
negative. All the dependence on the coe�cient of restitution appears in such a way that
it only leads to quantitative changes. The wavenumber dependence of the speed of sound
is the only quantity that also changes qualitatively with the coe�cient of restitution [25]
but it does not, of course, qualitatively alter the tagged particle dynamics.

As discussed in [25], there is a reservation to this conclusion. The factorization of the
phase space distribution function is a serious approximation. If it is avoided, and, e.g.,
the current correlation function S``(k) =

⌦
j

L
k |jLk

↵
is treated as an irreducible quantity,

additional terms will appear in the equations of motion that will also probably lead to new
qualitative features. At present, the easiest way to detect the non-equilibrium stationary
state is to look at S``(k) directly [37].

6. Summary and perspectives

I discussed the coupling of the tagged particle velocity to the hydrodynamic modes
of the host fluid in the framework of mode-coupling theory. Considering a randomly
driven inelastic hard sphere fluid with local momentum conservation, I found that the
VACF decays algebraically,  (t ! 1) / t

�↵, with an exponent ↵ = 3/2. This supports
observations from simulations [13]. The relevant process for the algebraic decay is, both for
elastic and inelastic hard spheres, the coupling to the transverse currents. The couplings
to the density and longitudinal currents have a finite lifetime. In general, the amplitude
of the long-time tail will decrease with increasing dissipation or, equivalently, strength of
driving.

The discussion of the VACF in a randomly driven granular fluid without momentum
conservation will be left to future work. This could possibly help to settle the question
about the nature of the long-time tails in the sheared granular fluid. Another step away
from idealizations would be to relax the assumption of an infinite driving frequency and
go to a more realistic finite frequency [38]. I hope that the explicit expressions for the
amplitudes will aid experimenters to judge whether the long-time tails are observable in
their set-ups.
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Appendix A. Vertices

Here, I will detail the calculation of the vertices.
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A.1. The longitudinal case

Due to the symmetry of the velocity distribution function, we have
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and
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This shows that the left vertex and the right vertex are identical. With
⌦
j

L

k |jsLk
↵
= 1/N

and
⌦
j

L

k |T+

j

sL

k

↵
= ⌫k/N , where ⌫k was determined in [25], equation (16a) follows.

A.2. The transverse case

Starting like in the longitudinal case, we find
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The proof that the left and right vertices are identical is completely analogous to the
discussion above.

We have
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i.e.,
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Using suitable relations between spherical Bessel functions, equation (16b) follows.
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Appendix B. Some integrals

All the integrals needed for m⇢,L(t ! 1) can be expressed as derivatives of

I(c, G; t) :=
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where the second equality is given in [31]. Then we have
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In particular,
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